线性回归最小二乘法公式推导「建议收藏」

线性回归最小二乘法公式推导「建议收藏」#1.符号表示首先我们将训练样本的**特征矩阵X**进行表示,其中N为样本个数,p为特征个数,每一行表示为每个样本,每一列表示特征的每个维度:

大家好,又见面了,我是你们的朋友全栈君。

1. 符号表示

首先我们将训练样本的特征矩阵X进行表示,其中N为样本个数,p为特征个数,每一行表示为每个样本,每一列表示特征的每个维度:
X = ( x 11 x 12 . . . x 1 p x 21 x 22 . . . x 2 p . . . . . . . . . . . . x N 1 x N 2 . . . x N p ) N ⋅ p X= \begin{gathered} \begin{pmatrix} x_{11} & x_{12} & … & x_{1p} \\ x_{21} & x_{22} & … & x_{2p} \\ … & … &… &… \\ x_{N1} & x_{N2} & … & x_{Np} \end{pmatrix} \quad \end{gathered}_{N\cdot p} X=x11x21...xN1x12x22...xN2............x1px2p...xNpNp

然后我们对训练样本的标签向量Y权重向量w进行表示,其中权重向量指的是线性回归中各个系数形成的向量。
Y = ( y 1 y 2 . . . y N ) Y = \begin{gathered} \begin{pmatrix} y_{1} \\ y_{2} \\ … \\ y_{N} \end{pmatrix} \quad \end{gathered} Y=y1y2...yN

w = ( w 1 w 2 . . . w p ) w = \begin{gathered} \begin{pmatrix} w_{1} \\ w_{2} \\ … \\ w_{p} \end{pmatrix} \quad \end{gathered} w=w1w2...wp
为了方便运算,我们把 y i = x i w + b y_{i} = x_{i}w + b yi=xiw+b中的b也并入到w和x中。则上述的符号表示则为:

X = ( x 10 x 11 x 12 . . . x 1 p x 20 x 21 x 22 . . . x 2 p . . . . . . . . . . . . . . . x N 0 x N 1 x N 2 . . . x N p ) N ⋅ p X= \begin{gathered} \begin{pmatrix} x_{10} & x_{11} & x_{12} & … & x_{1p} \\ x_{20} & x_{21} & x_{22} & … & x_{2p} \\ … & … &… &… &… \\ x_{N0} & x_{N1} & x_{N2} & … & x_{Np} \end{pmatrix} \quad \end{gathered}_{N\cdot p} X=x10x20...xN0x11x21...xN1x12x22...xN2............x1px2p...xNpNp

w = ( w 0 w 1 w 2 . . . w p ) w = \begin{gathered} \begin{pmatrix} w_{0} \\ w_{1} \\ w_{2} \\ … \\ w_{p} \end{pmatrix} \quad \end{gathered} w=w0w1w2...wp

2. 公式推导

L ( w ) = ∑ i = 1 N ( x i w − y i ) 2 L(w) = \sum^{N}_{i =1 } (x_{i}w – y_{i})^{2} L(w)=i=1N(xiwyi)2
w = arg ⁡ min ⁡ L ( w ) = arg ⁡ min ⁡ ∑ i = 1 N ( x i w − y i ) 2 w = \operatorname { arg } \operatorname { min }L(w) = \operatorname { arg } \operatorname { min } \sum^{N}_{i =1 } (x_{i}w – y_{i})^{2} w=argminL(w)=argmini=1N(xiwyi)2
为什么是转置乘以原矩阵,这是由于Y是列向量,则 ( X W − Y ) (XW – Y) (XWY)则也是列向量。根据矩阵乘法的定义,只有行向量乘以列向量,最终结果才是一个常数。
L ( w ) = ( X W − Y ) T ( X W − Y ) L(w) = (XW-Y)^{T} (XW-Y) L(w)=(XWY)T(XWY)

L ( w ) = ( W T X T − Y T ) ( X W − Y ) L(w) = (W^{T}X^{T} – Y^{T})(XW-Y) L(w)=(WTXTYT)(XWY)

L ( w ) = ( W T X T X W − 2 W T X T Y + Y T Y ) L(w) = (W^{T}X^{T}XW-2W^{T}X^{T}Y+Y^{T}Y) L(w)=(WTXTXW2WTXTY+YTY)

∂ L ( w ) ∂ w = 2 X T X W − 2 X T Y = 0 \frac { \partial L(w)} {\partial w} = 2X^{T}XW – 2X^{T}Y = 0 wL(w)=2XTXW2XTY=0

W = ( X T X ) − 1 X T Y W = {(X^{T}X)}^{-1}X^{T}Y W=(XTX)1XTY

  后记:其实求非线性回归的时候也可以使用该最小二乘法来计算多项式系数 w w w,只要把高次项添加到原始的 X X X后面即可。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145499.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python玫瑰花绘制「建议收藏」

    Python玫瑰花绘制「建议收藏」刚开始学Python,画个玫瑰花练练手,正好今天也是情人节我自认为还是挺好看的,感觉比我搜到的那几个画出来的强代码如下importturtleastt.setup(1100,1000)t.hideturtle()t.speed(11)t.penup()t.goto(50,-450)t.pensize(5)t.pencolor("black")t.seth(140)t…

    2022年4月18日
    85
  • 基于RGBD的slam_rgb算法

    基于RGBD的slam_rgb算法一.引言  首先,我们需要知道什么是SLAM(simultaneous localization and mapping, 详见SlamCN),SLAM,即时定位与制图,包含3个关键词:实时、定位、制图,就是实时完成定位和制图的任务,这就是SLAM要解决的基本任务。按照使用的传感器分为激光SLAM(LOAM、V-LOAM、cartographer)与视觉SLAM,其中视觉SLAM又可分为单

    2022年9月18日
    0
  • java8 groupingby_Java8stream中利用groupingBy进行多字段分组求和

    java8 groupingby_Java8stream中利用groupingBy进行多字段分组求和对集合按照单个属性分组、分组计数、排序Listitems=Arrays.asList(“apple”,”apple”,”banana”,”apple”,”orange”,”banana”,”papaya”);//分组Map>result1=items.stream().collect(Collectors.groupingBy(Function.identity()));…

    2022年8月20日
    16
  • 酒店管理系统-详细设计说明书

    酒店管理系统-详细设计说明书
    详细设计说明书1引言1.1编写目的
    本文档为**酒店管理系统详细设计说明书,为**酒店管理系统编码的主要依据。1.2背景
    本软件全称为**酒店管理系统。
    软件适用于普通二星级酒店、宾馆。 2界面功能描述2.0主界面
    系统运行主框架,实时显示房态信息。

     2.1散客开单
    完成对散客的开单任务。最多能追加五个相同类型的房间。

     2.2团体开单
    完成对团体宾客的开单任务。房间数没有限制,可同时追加不

    2022年5月12日
    44
  • 静默安装失败是什么意思_静默安装命令

    静默安装失败是什么意思_静默安装命令静默安装Oracle Database 18c

    2022年4月21日
    215

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号