最小二乘法正规方程推导过程

最小二乘法正规方程推导过程最小二乘法正规方程推导过程线性回归岭回归:添加L2L_2L2​正则项输入样本X∈Rm×n\textbf{X}\in\mathbb{R}^{m\timesn}X∈Rm×n,输出y∈Rm×1\textbf{y}\in\mathbb{R}^{m\times1}y∈Rm×1,需要学习的参数w∈Rn×1\textbf{w}\in\mathbb{R}^{n\times1}w∈Rn×1。其中,mmm为样本个数,nnn为单个样本维度。线性回归最小化目标函数J(w)=12∥y−Xw∥22J(\

大家好,又见面了,我是你们的朋友全栈君。

最小二乘法正规方程推导过程

问题描述

输入样本 X ∈ R m × n \textbf{X}\in \mathbb{R}^{m\times n} XRm×n,输出 y ∈ R m × 1 \textbf{y}\in\mathbb{R}^{m\times 1} yRm×1,需要学习的参数 w ∈ R n × 1 \textbf{w}\in \mathbb{R}^{n\times 1} wRn×1。其中, m m m 为样本个数, n n n 为单个样本维度。

线性回归

最小化目标函数
J ( w ) = 1 2 ∥ y − Xw ∥ 2 2 J(\textbf{w}) = \frac{1}{2}\left\Vert\textbf{y}-\textbf{Xw}\right\Vert^2_2 J(w)=21yXw22
有对 w \textbf{w} w 求梯度等于零
∇ J ( w ) = 0 ∇ ( y − Xw ) T ( y − Xw ) = 0 ∇ ( y T y − y T Xw − ( Xw ) T y + ( Xw ) T Xw ) = 0 ∇ ( − 2 w T X T y + w T X T Xw ) = 0 − 2 X T y + ( X T X + ( X T X ) T ) w = 0 − 2 X T y + 2 X T Xw = 0 w = ( X T X ) − 1 X T y \begin{aligned}&\nabla J(\textbf{w})=\textbf{0}\\& \nabla\left(\textbf{y}-\textbf{Xw}\right)^T\left(\textbf{y}-\textbf{Xw}\right)=\textbf{0}\\& \nabla\left(\textbf{y}^T\textbf{y}-\textbf{y}^T\textbf{Xw}-\left(\textbf{Xw}\right)^T\textbf{y}+(\textbf{Xw})^T\textbf{Xw}\right)=\textbf{0}\\& \nabla\left(-2\textbf{w}^T\textbf{X}^T\textbf{y}+\textbf{w}^T\textbf{X}^T\textbf{Xw}\right)=\textbf{0}\\& -2\textbf{X}^T\textbf{y}+\left(\textbf{X}^T\textbf{X}+\left(\textbf{X}^T\textbf{X}\right)^T\right)\textbf{w}=\textbf{0}\\& -2\textbf{X}^T\textbf{y}+2\textbf{X}^T\textbf{X}\textbf{w}=\textbf{0}\\& \textbf{w}=\left(\textbf{X}^T\textbf{X}\right)^{-1}\textbf{X}^T\textbf{y}\end{aligned} J(w)=0(yXw)T(yXw)=0(yTyyTXw(Xw)Ty+(Xw)TXw)=0(2wTXTy+wTXTXw)=02XTy+(XTX+(XTX)T)w=02XTy+2XTXw=0w=(XTX)1XTy

岭回归:添加 L 2 L_2 L2 正则项

最小化目标函数
J ( w ) = 1 2 ∥ y − Xw ∥ 2 2 + λ w T w J(\textbf{w}) = \frac{1}{2}\left\Vert\textbf{y}-\textbf{Xw}\right\Vert^2_2+\lambda\textbf{w}^T\textbf{w} J(w)=21yXw22+λwTw
有对 w \textbf{w} w 求梯度等于零
∇ J ( w ) = 0 ∇ ( y − Xw ) T ( y − Xw ) + λ ∇ w T w = 0 ∇ ( y T y − y T Xw − ( Xw ) T y + ( Xw ) T Xw ) + 2 λ w = 0 ∇ ( − 2 w T X T y + w T X T Xw ) + 2 λ w = 0 − 2 X T y + ( X T X + ( X T X ) T ) w + 2 λ w = 0 − 2 X T y + 2 X T Xw + 2 λ Iw = 0 w = ( X T X + λ I ) − 1 X T y \begin{aligned}&\nabla J(\textbf{w})=\textbf{0}\\& \nabla\left(\textbf{y}-\textbf{Xw}\right)^T\left(\textbf{y}-\textbf{Xw}\right)+\lambda\nabla\textbf{w}^T\textbf{w}=\textbf{0}\\& \nabla\left(\textbf{y}^T\textbf{y}-\textbf{y}^T\textbf{Xw}-\left(\textbf{Xw}\right)^T\textbf{y}+(\textbf{Xw})^T\textbf{Xw}\right)+2\lambda\textbf{w}=\textbf{0}\\& \nabla\left(-2\textbf{w}^T\textbf{X}^T\textbf{y}+\textbf{w}^T\textbf{X}^T\textbf{Xw}\right)+2\lambda\textbf{w}=\textbf{0}\\& -2\textbf{X}^T\textbf{y}+\left(\textbf{X}^T\textbf{X}+\left(\textbf{X}^T\textbf{X}\right)^T\right)\textbf{w}+2\lambda\textbf{w}=\textbf{0}\\& -2\textbf{X}^T\textbf{y}+2\textbf{X}^T\textbf{X}\textbf{w}+2\lambda\textbf{Iw}=\textbf{0}\\& \textbf{w}=\left(\textbf{X}^T\textbf{X}+\lambda\textbf{I}\right)^{-1}\textbf{X}^T\textbf{y}\end{aligned} J(w)=0(yXw)T(yXw)+λwTw=0(yTyyTXw(Xw)Ty+(Xw)TXw)+2λw=0(2wTXTy+wTXTXw)+2λw=02XTy+(XTX+(XTX)T)w+2λw=02XTy+2XTXw+2λIw=0w=(XTX+λI)1XTy

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145669.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • LeetCode解题汇总目录

    此篇为学习完《数据结构与算法之美》后,在LeetCode刷题的汇总目录,方便大家查找(Ctrl+Find),一起刷题,一起PK交流!另有解题:《剑指Offer》、《程序员面试金典》、LintCode代码能力测试CAT。如果本文对你有帮助,可以给我点赞加油!通过2021,简单618/636,中等1120/1266,困难283/488

    2022年4月7日
    35
  • 阿里云服务器ECS 实例操作(系统选择说明)

    阿里云服务器ECS 实例操作(系统选择说明)

    2021年7月5日
    72
  • 操作系统实验:银行家算法C语言实现

    操作系统实验:银行家算法C语言实现银行家算法C语言实现#include<stdio.h>#include<stdlib.h>#defineok1#definetrue1#definefalse0intclaim[100][100]={0};//各个进程需要的最大资源数量intalloc[100][100]={0};//各个进程已分配的资源数量intneed[100][100]={0};//各个进程还需要的资源数量intresource[100]={

    2022年6月1日
    39
  • pycharm中python版本_如何在pycharm中切换python版本「建议收藏」

    pycharm中python版本_如何在pycharm中切换python版本「建议收藏」由于历史原因,现在的python主要流行的是2.5左右的版本和3.0之后的版本。在实际中,我们也会选择不同的版本,或者随时切换版本。接下来我会介绍如何再pycharm中切换python版本工具/原料pycharm软件python3.3和python2.7两个版本,并且安装好方法/步骤1打开软件会看到,这里有明显的红色提示错误。原因是当前使用的是python3.3,当执行print的时候,打印的文字…

    2022年8月28日
    0
  • pycharm 批量替换_pycharm如何替换字符串

    pycharm 批量替换_pycharm如何替换字符串Pycharm中快速替换某个变量、某个字符可以使用Ctrl+R的快捷键来快速替换可以点击Replaceall来替换所有的匹配到的字符;如果要替换成空的,那么下面的输入框什么也不要输就可以。…

    2022年8月25日
    9
  • jieba库详解「建议收藏」

    jieba库详解「建议收藏」jieba是优秀的中文分词第三方库中文文本需要通过分词获得单个的词语jieba是优秀的中文分词第三方库,需要额外安装jieba库提供三种分词模式,最简单只需安装一个函数。jieba库是通过中文词库的方式来识别分词的。安装命令如下:点击windows+r,进入命令提示符输入cmd,进入界面后,输入pipinstalljieba。即可安装,示例如下:安装界面如下:jieba库分词依靠中文词库利用一个中文词库,确定汉字之间的关联概念汉字间概率大的组成词组,形成.

    2022年9月21日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号