word2vec原理与实现「建议收藏」

word2vec原理与实现「建议收藏」定义word2vec是一种把词转到某种向量空间的方法,在新的向量空间,词之间的相互关系,上下文关系都以某种程度被表征出来。方法词向量的转换方法有两种:CBOW(Continounsbagsofwords)和Skip-gram。以下图示为CBOW的网络结构图上图中的x1,x2,….Xc代表的是源码中的context向量中的每个单词,这个上下文的窗口大小对每个词都是随…

大家好,又见面了,我是你们的朋友全栈君。

定义

word2vec是一种把词转到某种向量空间的方法,在新的向量空间,词之间的相互关系,上下文关系都以某种程度被表征出来。

方法

词向量的转换方法有两种: CBOW(Continouns bags of words)和Skip-gram。
以下图示为CBOW的网络结构图
CBOW
上图中的x1,x2,….Xc代表的是源码中的context向量中的每个单词,这个上下文的窗口大小对每个词都是随机取值的。

源码解读

这里选取一个开源实现代码:Word2vec GitHub code
训练流程:

  1. 加载文件,初始化词汇表
  2. 初始化神经网络和霍夫曼树
  3. 多进程训练
    1. 遍历文档每一行,为每行生成词索引向量
      1. 根据window大小配置该词的上下文context
      2. 输入NN训练

训练核心算法:


def train(fi, fo, cbow, neg, dim, alpha, win, min_count, num_processes, binary):
    # Read train file to init vocab
    vocab = Vocab(fi, min_count)

    # Init net
    syn0, syn1 = init_net(dim, len(vocab))

    global_word_count = Value('i', 0)
    table = None
    if neg > 0:#默认参数是5
        print 'Initializing unigram table'
        table = UnigramTable(vocab)
    else: #没有负样本,使用hierarchical softmax
        print 'Initializing Huffman tree'
        vocab.encode_huffman()

    # Begin training using num_processes workers
    t0 = time.time()
    pool = Pool(processes=num_processes, initializer=__init_process,
                initargs=(vocab, syn0, syn1, table, cbow, neg, dim, alpha,
                          win, num_processes, global_word_count, fi))
    pool.map(train_process, range(num_processes))
    t1 = time.time()
    print
    print 'Completed training. Training took', (t1 - t0) / 60, 'minutes'

    # Save model to file
    save(vocab, syn0, fo, binary)

def train_process(pid):
    # Set fi to point to the right chunk of training file
    #因为是多进程处理数据,所以根据进程号做好数据块划分
    start = vocab.bytes / num_processes * pid
    end = vocab.bytes if pid == num_processes - 1 else vocab.bytes / num_processes * (pid + 1)
    fi.seek(start)
    #print 'Worker %d beginning training at %d, ending at %d' % (pid, start, end)

    alpha = starting_alpha

    word_count = 0
    last_word_count = 0
    #遍历数据块
    while fi.tell() < end:
        line = fi.readline().strip()
        # Skip blank lines
        if not line:
            continue

        # 为一行句子初始化索引向量
        sent = vocab.indices(['<bol>'] + line.split() + ['<eol>'])
        #遍历一句话中的每个词
        for sent_pos, token in enumerate(sent):
            if word_count % 10000 == 0:
                global_word_count.value += (word_count - last_word_count)
                last_word_count = word_count

                # 更新alpha值
                alpha = starting_alpha * (1 - float(global_word_count.value) / vocab.word_count)
                if alpha < starting_alpha * 0.0001: alpha = starting_alpha * 0.0001

                # Print progress info
                sys.stdout.write("\rAlpha: %f Progress: %d of %d (%.2f%%)" %
                                 (alpha, global_word_count.value, vocab.word_count,
                                  float(global_word_count.value) / vocab.word_count * 100))
                sys.stdout.flush()

            # Randomize window size, where win is the max window size
            #随机初始化一个窗口大小
            current_win = np.random.randint(low=1, high=win+1)
            context_start = max(sent_pos - current_win, 0)
            context_end = min(sent_pos + current_win + 1, len(sent))
            #构造输入的上下文向量[x1,x2,...x_c]
            context = sent[context_start:sent_pos] + sent[sent_pos+1:context_end] # Turn into an iterator?

            # CBOW
            if cbow:
                # Compute neu1
                #对上下文单词的词向量求均值做为输入层
                neu1 = np.mean(np.array([syn0[c] for c in context]), axis=0)
                assert len(neu1) == dim, 'neu1 and dim do not agree'

                # Init neu1e with zeros
                neu1e = np.zeros(dim)

                # Compute neu1e and update syn1
                #先处理target向量,也就是标签向量
                if neg > 0:
                    classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
                else:
                    #把词汇表中的该单词对应的索引和标签向量压成标签对
                    classifiers = zip(vocab[token].path, vocab[token].code)
                for target, label in classifiers:
                    z = np.dot(neu1, syn1[target])
                    p = sigmoid(z)
                    g = alpha * (label - p)
                    #计算反向回传的值
                    neu1e += g * syn1[target] # Error to backpropagate to syn0
                    #更新输出层值
                    syn1[target] += g * neu1  # Update syn1

                # Update syn0
                for context_word in context:
                    syn0[context_word] += neu1e

            # Skip-gram
            else:
                for context_word in context:
                    # Init neu1e with zeros
                    neu1e = np.zeros(dim)

                    # Compute neu1e and update syn1
                    if neg > 0:
                        classifiers = [(token, 1)] + [(target, 0) for target in table.sample(neg)]
                    else:
                        classifiers = zip(vocab[token].path, vocab[token].code)
                    for target, label in classifiers:
                        z = np.dot(syn0[context_word], syn1[target])
                        p = sigmoid(z)
                        g = alpha * (label - p)
                        neu1e += g * syn1[target]              # Error to backpropagate to syn0
                        syn1[target] += g * syn0[context_word] # Update syn1

                    # Update syn0
                    syn0[context_word] += neu1e

            word_count += 1

    # Print progress info
    global_word_count.value += (word_count - last_word_count)
    sys.stdout.write("\rAlpha: %f Progress: %d of %d (%.2f%%)" %
                     (alpha, global_word_count.value, vocab.word_count,
                      float(global_word_count.value)/vocab.word_count * 100))
    sys.stdout.flush()
    fi.close()

这里边用到了一个很重要的类Vocab,该类里边将会负责对词汇进行霍夫曼树编码:

#这个类用来存储霍夫曼树
class VocabItem:
    def __init__(self, word):
        self.word = word
        self.count = 0
        self.path = None # Path (list of indices) from the root to the word (leaf)
        self.code = None # Huffman encoding

class Vocab:
    def __init__(self, fi, min_count):
        vocab_items = []
        vocab_hash = {}
        word_count = 0
        fi = open(fi, 'r')

        # Add special tokens <bol> (beginning of line) and <eol> (end of line)
        for token in ['<bol>', '<eol>']:
            vocab_hash[token] = len(vocab_items)
            vocab_items.append(VocabItem(token))

        for line in fi:
            tokens = line.split()
            for token in tokens:
                if token not in vocab_hash:
                    vocab_hash[token] = len(vocab_items)
                    vocab_items.append(VocabItem(token))

                #assert vocab_items[vocab_hash[token]].word == token, 'Wrong vocab_hash index'
                vocab_items[vocab_hash[token]].count += 1
                word_count += 1

                if word_count % 10000 == 0:
                    sys.stdout.write("\rReading word %d" % word_count)
                    sys.stdout.flush()

            # Add special tokens <bol> (beginning of line) and <eol> (end of line)
            vocab_items[vocab_hash['<bol>']].count += 1
            vocab_items[vocab_hash['<eol>']].count += 1
            word_count += 2

        self.bytes = fi.tell()
        self.vocab_items = vocab_items         # List of VocabItem objects
        self.vocab_hash = vocab_hash           # Mapping from each token to its index in vocab
        self.word_count = word_count           # Total number of words in train file

        # Add special token <unk> (unknown),
        # merge words occurring less than min_count into <unk>, and
        # sort vocab in descending order by frequency in train file
        self.__sort(min_count)

        #assert self.word_count == sum([t.count for t in self.vocab_items]), 'word_count and sum of t.count do not agree'
        print 'Total words in training file: %d' % self.word_count
        print 'Total bytes in training file: %d' % self.bytes
        print 'Vocab size: %d' % len(self)

    def __getitem__(self, i):
        return self.vocab_items[i]

    def __len__(self):
        return len(self.vocab_items)

    def __iter__(self):
        return iter(self.vocab_items)

    def __contains__(self, key):
        return key in self.vocab_hash

    def __sort(self, min_count):
        tmp = []
        tmp.append(VocabItem('<unk>'))
        unk_hash = 0

        count_unk = 0
        for token in self.vocab_items:
            if token.count < min_count:
                count_unk += 1
                tmp[unk_hash].count += token.count
            else:
                tmp.append(token)

        tmp.sort(key=lambda token : token.count, reverse=True)

        # Update vocab_hash
        vocab_hash = {}
        for i, token in enumerate(tmp):
            vocab_hash[token.word] = i

        self.vocab_items = tmp
        self.vocab_hash = vocab_hash

        print
        print 'Unknown vocab size:', count_unk

    def indices(self, tokens):
        return [self.vocab_hash[token] if token in self else self.vocab_hash['<unk>'] for token in tokens]

    def encode_huffman(self):
        # Build a Huffman tree
        vocab_size = len(self)
        count = [t.count for t in self] + [1e15] * (vocab_size - 1)
        parent = [0] * (2 * vocab_size - 2)
        binary = [0] * (2 * vocab_size - 2)

        pos1 = vocab_size - 1
        pos2 = vocab_size

        for i in xrange(vocab_size - 1):
            # Find min1
            if pos1 >= 0:
                if count[pos1] < count[pos2]:
                    min1 = pos1
                    pos1 -= 1
                else:
                    min1 = pos2
                    pos2 += 1
            else:
                min1 = pos2
                pos2 += 1

            # Find min2
            if pos1 >= 0:
                if count[pos1] < count[pos2]:
                    min2 = pos1
                    pos1 -= 1
                else:
                    min2 = pos2
                    pos2 += 1
            else:
                min2 = pos2
                pos2 += 1

            count[vocab_size + i] = count[min1] + count[min2]
            parent[min1] = vocab_size + i
            parent[min2] = vocab_size + i
            binary[min2] = 1

        # Assign binary code and path pointers to each vocab word
        root_idx = 2 * vocab_size - 2
        for i, token in enumerate(self):
            path = [] # List of indices from the leaf to the root
            code = [] # Binary Huffman encoding from the leaf to the root

            node_idx = i
            while node_idx < root_idx:
                if node_idx >= vocab_size: path.append(node_idx)
                code.append(binary[node_idx])
                node_idx = parent[node_idx]
            path.append(root_idx)

            # These are path and code from the root to the leaf
            token.path = [j - vocab_size for j in path[::-1]]
            token.code = code[::-1]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145977.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 决策树原理简介[通俗易懂]

    决策树原理简介[通俗易懂]基于决策树(DT)的算法如RF、GBDT在各种工业场景有着广泛的应用,了解决策树基础算法非常重要,下面我们就对于决策树算法做一下总结决策树分类器基本思想决策树是一种基于分治法的分类器。假设我们有若干个样本点,把它们放在一个节点内,按照最原始的方法对数据做分类,我们可以对节点内部的样本标签做统计,每一个新的样本都可以归为标签的众数(数量最多的标签);当然,这个方法太粗暴没有实用价值,那么我们…

    2025年10月4日
    3
  • html超链接样式设置「建议收藏」

    html超链接样式设置「建议收藏」type=”text/css”>A {FONT-SIZE: 16px; FONT-FAMILY: 宋体}A:link {COLOR: #0055bb; TEXT-DECORATION: none}A:visited {COLOR: #0077bb; TEXT-DECORATION: none}A:hover {COLOR: #ff0000

    2022年7月19日
    15
  • MySQL数据库:读写分离

    MySQL数据库:读写分离

    2021年4月9日
    157
  • VUE(相关简介及初始)

    1.什么是vueVue是一个数据驱动页面的一个框架,基于MVVM模式,M指的是数据,V值得是视图,VM是视图模型,将数据绑定视图上(双向绑定)这个框架着重于VM部分2.VUE诞生的背景近几年来

    2022年3月29日
    41
  • 自动化测试po模式是什么?自动化测试po分层如何实现?-附详细源码[通俗易懂]

    自动化测试po模式是什么?自动化测试po分层如何实现?-附详细源码[通俗易懂]一、什么是PO模式全称:pageobjectmodel简称POMPO模式最核心的思想是分层,实现松耦合!实现脚本重复使用,实现脚本易维护性!主要分三层:1.基础层BasePage:封装一些最基础的selenium的原生的api方法,元素定位,框架跳转等。2.PO层:元素定位、获得元素对象,页面动作3.测试用例层:业务逻辑,数据驱动!三者的关系:PO层继承继承层,测试用例层调用PO层!二、非PO模式和PO模式优缺点对比笔者来自公众号:软测之家 非PO模式 PO模式.

    2022年5月27日
    93
  • java面试题高级_Java高级面试题整理(附答案)[通俗易懂]

    java面试题高级_Java高级面试题整理(附答案)[通俗易懂]javajava8java开发Java高级面试题整理(附答案)这是我收集的10道高级Java面试问题列表。这些问题主要来自Java核心部分,不涉及JavaEE相关问题。你可能知道这些棘手的Java问题的答案,或者觉得这些不足以挑战你的Java知识,但这些问题都是容易在各种Java面试中被问到的,而且包括我的朋友和同事在内的许多程序员都觉得很难回答。1…

    2022年7月18日
    15

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号