粒子群算法改进思路「建议收藏」

粒子群算法改进思路「建议收藏」粒子群算法的发展过程。粒子群优化算法(ParticalSwarmOptimizationPSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性.由于PSO操作简单、收敛速度快,因此在函数优化、图像处理、大地测量等众多领域都得到了广泛的应用.随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要…

大家好,又见面了,我是你们的朋友全栈君。

粒子群算法的发展过程。粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性.由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用. 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要有以下几种发展方向。

(1)调整PSO的参数来平衡算法的全局探测和局部开采能力.如Shi和Eberhart对PSO算法的速度项引入了惯性权重,并依据迭代进程及粒子飞行情况对惯性权重进行线性(或非线性)的动态调整,以平衡搜索的全局性和收敛速度.2009年张玮等在对标准粒子群 算法位置期望及方差进行稳定性分析的基础上,研究了加速因子对位置期望及方差的影响,得出了一组较好的加速因子取值。

(2)设计不同类型的拓扑结构,改变粒子学习模式,从而提高种群的多样性,Kennedy等人研究了不同的拓扑结构对SPSO性能的影响.针对SPSO存在易早熟收敛,寻优精度不高的缺点,于2003年提出了一种更为明晰的粒子群算法的形式:骨干粒子群算法(Bare Bones PSO,BBPSO).

(3)将PSO和其他优化算法(或策略)相结合,形成混合PSO算法.如曾毅等将模式搜索算法嵌入到PSO算法中,实现了模式搜索算法的局部搜索能力与PSO算法的全局寻优能力的优势互补.

(4)采用小生境技术.小生境是模拟生态平衡的一种仿生技术,适用于多峰函数和多目标函数的优化问题.例如,在PSO算法中,通过构造小生境拓扑,将种群分成若干个子种群,动态地形成相对独立的搜索空

间,实现对多个极值区域的同步搜索,从而可以避免算法在求解多峰函数优化问题时出现早熟收敛现象. Parsopoulos提出一种基于“分而治之”思想的多种群PSO算法,其核心思想是将高维的目标函数分解成多个低维函数,然后每个低维的子函数由一个子粒子群进行优化,该算法对高维问题的求解提供了一个较好的思路.

不同的发展方向代表不同的应用领域,有的需要不断进行全局探测,有的需要提高寻优精度,有的需要全局搜索和局部搜索相互之间的平衡,还有的需要对高维问题进行求解。这些方向没有谁好谁坏的可比性,只有针对不同领域的不同问题求解时选择最合适的方法的区别。

2   相关模型和思想

粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。最简单有效的策略?寻找鸟群中离食物最近的个体来进行搜素。PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

用一种粒子来模拟上述的鸟类个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对应优化问题的一个候选解,粒子的飞行过程即为该个体的搜索过程.粒子的飞行速度可根据粒子历史最优位置和种群历史最优位置进行动态调整.粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子单独搜寻的最优解叫做个体极值,粒子群中最优的个体极值作为当前全局最优解。不断迭代,更新速度和位置。最终得到满足终止条件的最优解。
 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/146025.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • webstorm 永久激活方法【2021免费激活】

    (webstorm 永久激活方法)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~3S…

    2022年3月30日
    69
  • tls协议和ssl协议的区别_起因和由来的区别

    tls协议和ssl协议的区别_起因和由来的区别SSL与TLS区别和联系,HPPTS的由来1、什么是SSL?2、什么是TLS?3、SSL与TLS的关系4、HPPTS的由来5、总结1、什么是SSL?SSL:(SecureSocketLayer,安全套接字层),位于可靠的面向连接的网络层协议和应用层协议之间的一种协议层。SSL通过互相认证、使用数字签名确保完整性、使用加密确保私密性,以实现客户端和服务器之间的安全通讯。SSL协议可分为两层:SSL记录协议(SSLRecordProtocol):它建立在可靠的传输协议(如TCP)之上,为高层协

    2022年10月2日
    3
  • 哈佛的幸福课笔记

    哈佛的幸福课笔记觉得对本人而言有新信息的是第四课和第六课。第八课关于感恩,很好!(Tal和外婆的真实的故事,感人,几次热泪盈眶)。第10课关于改变当然很有用。第12、13课讨论关于建立自我和谐的目标和应对压力问题。哈佛的幸福课 http://v.163.com/special/positivepsychology/ (提醒:每课一个半小时) 第一课什么是积极心理学笔记:(简介)1、解读比

    2022年7月25日
    7
  • goland2021 激活码_在线激活

    (goland2021 激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~S32P…

    2022年3月22日
    248
  • vgg网络论文_dna结构综述论文

    vgg网络论文_dna结构综述论文原文地址:https://arxiv.org/pdf/1409.1556.pdfVGG简介:VGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,VGG在Top-5中取得了92.3%的正确率。同年的冠军是googl…

    2022年10月21日
    2
  • customErrors与错误页面[通俗易懂]

    customErrors与错误页面[通俗易懂]本配置节相对简单而且常用mode的值有如下三种值说明On指定启用自定义错误。如果未指定 defaultRedirect,用户将看到一般性错误。Off指定禁用自定义错误。这允许显

    2022年7月3日
    39

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号