支持向量回归模型SVR

支持向量回归模型SVR1.SVM回归模型的损失函数度量    回顾下我们前面SVM分类模型中,我们的目标函数是让12||w||2212||w||22最小,同时让各个训练集中的点尽量远离自己类别一边的的支持向量,即yi(w∙ϕ(xi)+b)≥1yi(w∙ϕ(xi)+b)≥1。如果是加入一个松弛变量ξi≥0ξi≥0,则目标函数是12||w||22+C∑i=1mξi12||w||22+C∑i=1mξi,对应的约束条

大家好,又见面了,我是你们的朋友全栈君。

1. SVM回归模型的损失函数度量

    回顾下我们前面SVM分类模型中,我们的目标函数是让 12||w||22 12||w||22最小,同时让各个训练集中的点尽量远离自己类别一边的的支持向量,即 yi(wϕ(xi)+b)1 yi(w∙ϕ(xi)+b)≥1。如果是加入一个松弛变量 ξi0 ξi≥0,则目标函数是 12||w||22+Ci=1mξi 12||w||22+C∑i=1mξi,对应的约束条件变成: yi(wϕ(xi)+b)1ξi yi(w∙ϕ(xi)+b)≥1−ξi

    但是我们现在是回归模型,优化目标函数可以继续和SVM分类模型保持一致为 12||w||22 12||w||22,但是约束条件呢?不可能是让各个训练集中的点尽量远离自己类别一边的的支持向量,因为我们是回归模型,没有类别。对于回归模型,我们的目标是让训练集中的每个点 (xi,yi) (xi,yi),尽量拟合到一个线性模型 yi =wϕ(xi)+b yi =w∙ϕ(xi)+b。对于一般的回归模型,我们是用均方差作为损失函数,但是SVM不是这样定义损失函数的。

    SVM需要我们定义一个常量 ϵ>0 ϵ>0,对于某一个点 (xi,yi) (xi,yi),如果 |yiwϕ(xi)b|ϵ |yi−w∙ϕ(xi)−b|≤ϵ,则完全没有损失,如果 |yiwϕ(xi)b|>ϵ |yi−w∙ϕ(xi)−b|>ϵ,则对应的损失为 |yiwϕ(xi)b|ϵ |yi−w∙ϕ(xi)−b|−ϵ,这个均方差损失函数不同,如果是均方差,那么只要 yiwϕ(xi)b0 yi−w∙ϕ(xi)−b≠0,那么就会有损失。

    如下图所示,在蓝色条带里面的点都是没有损失的,但是外面的点的是有损失的,损失大小为红色线的长度。

支持向量回归模型SVR

    总结下,我们的SVM回归模型的损失函数度量为:

err(xi,yi)={
0|yiwϕ(xi)+b|ϵ|yiwϕ(xi)b|ϵ|yiwϕ(xi)b|>ϵ
err(xi,yi)={0|yi−w∙ϕ(xi)−b|≤ϵ|yi−w∙ϕ(xi)+b|−ϵ|yi−w∙ϕ(xi)−b|>ϵ

2. SVM回归模型的目标函数的原始形式

    上一节我们已经得到了我们的损失函数的度量,现在可以可以定义我们的目标函数如下:

min12||w||22s.t|yiwϕ(xi)b|ϵ(i=1,2,...m) min12||w||22s.t|yi−w∙ϕ(xi)−b|≤ϵ(i=1,2,…m)

    和SVM分类模型相似,回归模型也可以对每个样本 (xi,yi) (xi,yi)加入松弛变量 ξi0 ξi≥0, 但是由于我们这里用的是绝对值,实际上是两个不等式,也就是说两边都需要松弛变量,我们定义为 ξi,ξi ξi∨,ξi∧, 则我们SVM回归模型的损失函数度量在加入松弛变量之后变为:

min12||w||22+Ci=1m(ξi+ξi) min12||w||22+C∑i=1m(ξi∨+ξi∧)

s.t.ϵξiyiwϕ(xi)bϵ+ξi s.t.−ϵ−ξi∨≤yi−w∙ϕ(xi)−b≤ϵ+ξi∧

ξi0,ξi0(i=1,2,...,m) ξi∨≥0,ξi∧≥0(i=1,2,…,m)

    依然和SVM分类模型相似,我们可以用拉格朗日函数将目标优化函数变成无约束的形式,也就是拉格朗日函数的原始形式如下:

L(w,b,α,α,ξi,ξi,μ,μ)=12||w||22+Ci=1m(ξi+ξi)+i=1mα(ϵξiyi+wϕ(xi)+b)+i=1mα(yiwϕ(xi)bϵξi)i=1mμξii=1mμξi L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)=12||w||22+C∑i=1m(ξi∨+ξi∧)+∑i=1mα∨(−ϵ−ξi∨−yi+w∙ϕ(xi)+b)+∑i=1mα∧(yi−w∙ϕ(xi)−b−ϵ−ξi∧)−∑i=1mμ∨ξi∨−∑i=1mμ∧ξi∧

    其中  μ0,μ0,αi0,αi0 μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0,均为拉格朗日系数。

3. SVM回归模型的目标函数的对偶形式

    上一节我们讲到了SVM回归模型的目标函数的原始形式,我们的目标是

minw,b,ξi,ξimaxμ0,μ0,αi0,αi0L(w,b,α,α,ξi,ξi,μ,μ) min⏟w,b,ξi∨,ξi∧max⏟μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)

    和SVM分类模型一样,这个优化目标也满足KKT条件,也就是说,我们可以通过拉格朗日对偶将我们的优化问题转化为等价的对偶问题来求解如下:

maxμ0,μ0,αi0,αi0minw,b,ξi,ξiL(w,b,α,α,ξi,ξi,μ,μ) max⏟μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0min⏟w,b,ξi∨,ξi∧L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)

    我们可以先求优化函数对于 w,b,ξi,ξi w,b,ξi∨,ξi∧的极小值, 接着再求拉格朗日乘子 α,α,μ,μ α∨,α∧,μ∨,μ∧的极大值。

    首先我们来求优化函数对于 w,b,ξi,ξi w,b,ξi∨,ξi∧的极小值,这个可以通过求偏导数求得:

Lw=0w=i=1m(αiαi)ϕ(xi) ∂L∂w=0⇒w=∑i=1m(αi∧−αi∨)ϕ(xi)

Lb=0i=1m(αiαi)=0 ∂L∂b=0⇒∑i=1m(αi∧−αi∨)=0

Lξi=0Cαμ=0 ∂L∂ξi∨=0⇒C−α∨−μ∨=0

Lξi=0Cαμ=0 ∂L∂ξi∧=0⇒C−α∧−μ∧=0

 

    好了,我们可以把上面4个式子带入 L(w,b,α,α,ξi,ξi,μ,μ) L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)去消去 w,b,ξi,ξi w,b,ξi∨,ξi∧了。

    看似很复杂,其实消除过程和系列第一篇第二篇文章类似,由于式子实在是冗长,这里我就不写出推导过程了,最终得到的对偶形式为:

maxα,αi=1m(ϵyi)αi+(ϵ+yi)αi)12i=1,j=1m(αiαi)(αjαj)Kij max⏟α∨,α∧∑i=1m(ϵ−yi)αi∧+(ϵ+yi)αi∨)−12∑i=1,j=1m(αi∧−αi∨)(αj∧−αj∨)Kij

s.t.i=1m(αiαi)=0 s.t.∑i=1m(αi∧−αi∨)=0

0<αi<C(i=1,2,...m) 0<αi∨<C(i=1,2,…m)

0<αi<C(i=1,2,...m) 0<αi∧<C(i=1,2,…m)


     对目标函数取负号,求最小值可以得到和SVM分类模型类似的求极小值的目标函数如下:

minα,α12i=1,j=1m(αiαi)(αjαj)Kiji=1m(ϵyi)αi+(ϵ+yi)αi min⏟α∨,α∧12∑i=1,j=1m(αi∧−αi∨)(αj∧−αj∨)Kij−∑i=1m(ϵ−yi)αi∧+(ϵ+yi)αi∨

s.t.i=1m(αiαi)=0 s.t.∑i=1m(αi∧−αi∨)=0

0<αi<C(i=1,2,...m) 0<αi∨<C(i=1,2,…m)

0<αi<C(i=1,2,...m) 0<αi∧<C(i=1,2,…m)

    对于这个目标函数,我们依然可以用第四篇讲到的SMO算法来求出对应的 α,α α∨,α∧,进而求出我们的回归模型系数 w,b w,b

4. SVM回归模型系数的稀疏性

    在SVM分类模型中,我们的KKT条件的对偶互补条件为:  αi(yi(wϕ(xi)+b)1)=0 αi∗(yi(w∙ϕ(xi)+b)−1)=0,而在回归模型中,我们的对偶互补条件类似如下:

αi(ϵ+ξi+yiwϕ(xi)b)=0 αi∨(ϵ+ξi∨+yi−w∙ϕ(xi)−b)=0

αi(ϵ+ξiyi+wϕ(xi)+b)=0 αi∧(ϵ+ξi∧−yi+w∙ϕ(xi)+b)=0

    根据松弛变量定义条件,如果 |yiwϕ(xi)b|<ϵ |yi−w∙ϕ(xi)−b|<ϵ,我们有 ξi=0,ξi=0 ξi∨=0,ξi∧=0,此时 ϵ+ξi+yiwϕ(xi)b0,ϵ+ξiyi+wϕ(xi)+b0 ϵ+ξi∨+yi−w∙ϕ(xi)−b≠0,ϵ+ξi∧−yi+w∙ϕ(xi)+b≠0这样要满足对偶互补条件,只有 αi=0,αi=0 αi∨=0,αi∧=0

    我们定义样本系数系数

βi=αiαi βi=αi∧−αi∨

    根据上面 w w的计算式 w=i=1m(αiαi)ϕ(xi) w=∑i=1m(αi∧−αi∨)ϕ(xi),我们发现此时 βi=0 βi=0,也就是说 w w不受这些在误差范围内的点的影响。对于在边界上或者在边界外的点, αi0,αi0 αi∨≠0,αi∧≠0,此时 βi0 βi≠0

5. SVM 算法小结

    这个系列终于写完了,这里按惯例SVM 算法做一个总结。SVM算法是一个很优秀的算法,在集成学习和神经网络之类的算法没有表现出优越性能前,SVM基本占据了分类模型的统治地位。目前则是在大数据时代的大样本背景下,SVM由于其在大样本时超级大的计算量,热度有所下降,但是仍然是一个常用的机器学习算法。

    SVM算法的主要优点有:

    1) 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然有很好的效果。

    2) 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。

    3) 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。

    4)样本量不是海量数据的时候,分类准确率高,泛化能力强。

    SVM算法的主要缺点有:

    1) 如果特征维度远远大于样本数,则SVM表现一般。

    2) SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用。

    3)非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数。

    4)SVM对缺失数据敏感。

   

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/146058.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 内核态和用户态的区别_会导致用户进程用户态到内核态

    内核态和用户态的区别_会导致用户进程用户态到内核态1、用户态和内核态的区别?明白这两个概念之前,我们得知道用户空间和内核空间。用户空间:指的就是用户可以操作和访问的空间,这个空间通常存放我们用户自己写的数据等。内核空间:是系统内核来操作的一块空间,这块空间里面存放系统内核的函数、接口等。在用户空间下执行,我们把此时运行得程序的这种状态成为用户态,而当这段程序执行在内核的空间执行时,这种状态称为内核态。当一个任务(进程)执行系统…

    2022年9月18日
    2
  • 查看win7系统激活信息时候常用的一些命令

    查看win7系统激活信息时候常用的一些命令1.slmgr.vbs-dli  显示:操作系统版本、部门产品密钥、许可证状态  2.slmgr.vbs-dlv  显示:最为详尽的激活信息,包括:激活ID、安装ID、激活截止日期  3.slmgr.vbs-xpr  显示:是不是彻底激活  4.slmgr.vbs-ipk  更换WIN7序列号  5.slmgr.vbs-ato  激活WIN7 …

    2022年5月30日
    65
  • TortoiseSVN新人使用指南[通俗易懂]

    TortoiseSVN新人使用指南[通俗易懂]这篇文章源于6月份给公司新人作的关于SVN使用的培训,转眼已经过了几个月的时间,丢了也怪可惜的,于是整理出来希望能够帮助后来人快速入门。安装说明使用说明检出项目导入项目提交更新查看日志版本回滚版本控制总结安装说明开发人员强烈建议使用IDE中的SVN插件更加智能与人性化。首先安装SVN客户端,windows一般选择乌龟客户端https://tortoisesvn.net/d

    2022年5月3日
    47
  • laravel5.6之发送邮件

    laravel5.6之发送邮件

    2021年10月24日
    41
  • 单点登录说明(单点登录流程)

      什么是单点登录?单点登录全称SingleSignOn(以下简称SSO),是指在多系统应用群中登录一个系统,便可在其他所有系统中得到授权而无需再次登录,包括单点登录与单点注销两部分1、登录  相比于单系统登录,sso需要一个独立的认证中心,只有认证中心能接受用户的用户名密码等安全信息,其他系统不提供登录入口,只接受认证中心的间接授权。间接授权通过令牌实现,sso认证中心验证用户的用户…

    2022年4月14日
    267
  • 关于window10安装jdk,配置环境变量,javac不是内部或外部命令,也不是可运行的程序 或批处理文件的细节问题。[通俗易懂]

    关于window10安装jdk,配置环境变量,javac不是内部或外部命令,也不是可运行的程序 或批处理文件的细节问题。[通俗易懂]今日拿到一台新的window10笔记本电脑,非常熟练的安装了JDK(因为在学校经常给同学安装JDK–)但是发现javajava-version命令都可以使用,唯独javac命令出现不是内部或外部命令,也不是可运行的程序或批处理文件。出现这个问题基本就是命令找不到路径,基本可以锁定是环境变量Path出现问题。我们查看Path环境变量发现如下情况:注意红色框框,看到配置的环境变量出现…

    2022年5月28日
    58

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号