Pytorch-DataLoader的使用

Pytorch-DataLoader的使用原文连接:http://chenhao.space/post/d313d236.htmlpytorch-DataLoader的使用importtorchimporttorch.utils.dataasData#[1,1,1]相当于一句话的wordembedding,这个tensor中含有三句话x=torch.tensor([[1,1,1],[2,2,2…

大家好,又见面了,我是你们的朋友全栈君。

原文连接: http://chenhao.space/post/d313d236.html

pytorch-DataLoader的使用

import torch
import torch.utils.data as Data

# [1, 1, 1]相当于一句话的word embedding,这个tensor中含有三句话
x = torch.tensor([[1, 1, 1], [2, 2, 2,], [3, 3, 3], [4, 4, 4], [5, 5, 5,], [6, 6, 6],[7, 7, 7], [8, 8, 8,], [9, 9, 9], [10, 10, 10]])
# [1, 2, 3]分别是这三句话的标签
y = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

torch_dataset = Data.TensorDataset(x, y)

# dataset:Dataset类型,从其中加载数据 
# batch_size:int,可选。每个batch加载多少样本 
# shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌 
# sampler:Sampler,可选。从数据集中采样样本的方法。 
# num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。 
# collate_fn:callable,可选。 
# pin_memory:bool,可选 
# drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。
loader = Data.DataLoader(torch_dataset, batch_size=3, shuffle=True, num_workers=0)

data = iter(loader)

n = len(y)//3 if len(y)%3 == 0 else len(y)//3 + 1   # batch的数量
for i in range(n):   
    print(next(data))
[tensor([[5, 5, 5],
        [9, 9, 9],
        [8, 8, 8]]), tensor([5, 9, 8])]
[tensor([[10, 10, 10],
        [ 2,  2,  2],
        [ 7,  7,  7]]), tensor([10,  2,  7])]
[tensor([[6, 6, 6],
        [1, 1, 1],
        [3, 3, 3]]), tensor([6, 1, 3])]
[tensor([[4, 4, 4]]), tensor([4])]

for epoch in range(5):   # 训练所有数据5次
    i = 0
    for sentence, label in loader:
        i += 1
        print('Epoch:{} | num:{} | sentence:{} | label:{}'.format(epoch,i,sentence,label))
Epoch:0 | num:1 | sentence:tensor([[10, 10, 10],
        [ 2,  2,  2],
        [ 8,  8,  8]]) | label:tensor([10,  2,  8])
Epoch:0 | num:2 | sentence:tensor([[7, 7, 7],
        [9, 9, 9],
        [5, 5, 5]]) | label:tensor([7, 9, 5])
Epoch:0 | num:3 | sentence:tensor([[6, 6, 6],
        [4, 4, 4],
        [1, 1, 1]]) | label:tensor([6, 4, 1])
Epoch:0 | num:4 | sentence:tensor([[3, 3, 3]]) | label:tensor([3])
Epoch:1 | num:1 | sentence:tensor([[9, 9, 9],
        [3, 3, 3],
        [4, 4, 4]]) | label:tensor([9, 3, 4])
Epoch:1 | num:2 | sentence:tensor([[8, 8, 8],
        [6, 6, 6],
        [5, 5, 5]]) | label:tensor([8, 6, 5])
Epoch:1 | num:3 | sentence:tensor([[ 1,  1,  1],
        [10, 10, 10],
        [ 2,  2,  2]]) | label:tensor([ 1, 10,  2])
Epoch:1 | num:4 | sentence:tensor([[7, 7, 7]]) | label:tensor([7])
Epoch:2 | num:1 | sentence:tensor([[4, 4, 4],
        [6, 6, 6],
        [7, 7, 7]]) | label:tensor([4, 6, 7])
Epoch:2 | num:2 | sentence:tensor([[10, 10, 10],
        [ 8,  8,  8],
        [ 5,  5,  5]]) | label:tensor([10,  8,  5])
Epoch:2 | num:3 | sentence:tensor([[3, 3, 3],
        [2, 2, 2],
        [9, 9, 9]]) | label:tensor([3, 2, 9])
Epoch:2 | num:4 | sentence:tensor([[1, 1, 1]]) | label:tensor([1])
Epoch:3 | num:1 | sentence:tensor([[7, 7, 7],
        [5, 5, 5],
        [3, 3, 3]]) | label:tensor([7, 5, 3])
Epoch:3 | num:2 | sentence:tensor([[10, 10, 10],
        [ 1,  1,  1],
        [ 6,  6,  6]]) | label:tensor([10,  1,  6])
Epoch:3 | num:3 | sentence:tensor([[9, 9, 9],
        [8, 8, 8],
        [4, 4, 4]]) | label:tensor([9, 8, 4])
Epoch:3 | num:4 | sentence:tensor([[2, 2, 2]]) | label:tensor([2])
Epoch:4 | num:1 | sentence:tensor([[ 5,  5,  5],
        [ 7,  7,  7],
        [10, 10, 10]]) | label:tensor([ 5,  7, 10])
Epoch:4 | num:2 | sentence:tensor([[9, 9, 9],
        [3, 3, 3],
        [4, 4, 4]]) | label:tensor([9, 3, 4])
Epoch:4 | num:3 | sentence:tensor([[2, 2, 2],
        [8, 8, 8],
        [1, 1, 1]]) | label:tensor([2, 8, 1])
Epoch:4 | num:4 | sentence:tensor([[6, 6, 6]]) | label:tensor([6])
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/146258.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 基于 ThinkPHP5+Bootstrap 的后台开发框架 FastAdmin

    基于 ThinkPHP5+Bootstrap 的后台开发框架 FastAdmin

    2021年10月18日
    40
  • 关于group by的用法 原理

    关于group by的用法 原理写在前面的话:用了好久groupby,今天早上一觉醒来,突然感觉groupby好陌生,总有个筋别不过来,为什么不能够select*fromTablegroupbyid,为什么一定不能是*,而是某一个列或者某个列的聚合函数,groupby多个字段可以怎么去很好的理解呢?不过最后还是转过来了,简单写写吧,大牛们直接略过吧。=========正文开始===========  …

    2022年5月9日
    66
  • html一个汉字空格占位_html空格字符

    html一个汉字空格占位_html空格字符1. (常用)不换行空格,全称No-BreakSpace,它是按下space键产生的空格。空格不会累加(只显示一个)。使用html表示才会累加,该空格占据宽度受字体影响。2. 半角空格,全称EnSpace,en为em宽度的一半(em类似于px受设置不同为20px=1em或其他自定义大小)。占据0.5个中文宽度,不受字体影响。3、&em…

    2022年10月4日
    0
  • 对角化可逆矩阵怎么求_正交矩阵一定可逆吗

    对角化可逆矩阵怎么求_正交矩阵一定可逆吗1矩阵对角化方法摘要:本文给出了一种不同于传统方法的矩阵对角化方法,利用矩阵的初等变换,先求出矩阵的特征根与特征向量,接着再判断矩阵是否可对角化。关键词:矩阵特征根特征向量对角化TheMethodsoftheDiagonalizationoftheMatrixgAbstract:Inthispaper,themethodofthediagonalizationoft…

    2025年6月15日
    0
  • PowerDesigner工具简介

    PowerDesigner工具简介

    2021年7月21日
    116
  • idea 2022 mac 激活码(JetBrains全家桶)[通俗易懂]

    (idea 2022 mac 激活码)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html…

    2022年3月31日
    464

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号