PR曲线和ROC曲线概念及其区别

PR曲线和ROC曲线概念及其区别将测试样本的预测结果按照置信度排序,由高到低,卡个阈值作为正负样本的判定依据,阈值较高时,Precision比较大,阈值较低时,Recall较大。(推荐的话,想Precision较大,用户希望排名靠前的推荐是自己想要的,刑侦的话希望Recall较大,不错过一个犯人)知识点Precision=TP/(TP+FP)Recall=TP/(总的正样本)=TP/(TP+FN)#这个时候的TP…

大家好,又见面了,我是你们的朋友全栈君。

知识点

Precision=TP/(TP+FP)
Recall=TP/(总的正样本)=TP/(TP+FN) # 这个时候的
TPR=TP/(TP+FN)=Recall # 真正例率
FPR=FP/(TN+FP) #
PR曲线
横Recall,纵Precision
PR曲线的绘制
场景:有限样本。
方法:固定分类阈值(比如0.5),对分类器的预测结果按照置信度进行降序排序,然后按此顺序对样例进行预测,每次可以计算出当前的查全率(Recall)和查准率(Precision),然后以此作图,绘制出P-R曲线。(疑惑??:P-R曲线是按照固定的分类阈值,还是按照西瓜书所讲,按照置信度降序的顺序,逐个把样本作为正例进行预测??我做商汤的笔试题,是采取固定分类阈值的策略)
ROC曲线 横FPR,纵TPR,理想的情况是TPR=1,FPR=0,一般来说,FPR增大,则TPR也会跟着增大。
ROC曲线的绘制:
场景:有限样本。
方法:卡阈值,对学习器的预测结果排序,排在前面的是最可能为正例的样本,最后的是最不可能的样本,然后计算不同阈值下的TPR和FPR值,绘制出曲线。
卡阈值作为正负样本的判定依据,阈值较高时,Precision比较大,阈值较低时,Recall较大。(推荐的话,想Precision较大,用户希望排名靠前的推荐是自己想要的,刑侦的话希望Recall较大,不错过一个犯人)
AUC:ROC曲线下面积。
PR和ROC曲线应用范围:
1.当正负样本比例差不多的时候,两者区别不大。
2.PR曲线比ROC曲线更加关注正样本,而ROC则兼顾了两者。
3.AUC越大,反映出正样本的预测结果更加靠前。(推荐的样本更能符合用户的喜好)
4.当正负样本比例失调时,比如正样本1个,负样本100个,则ROC曲线变化不大,此时用PR曲线更加能反映出分类器性能的好坏。
5.PR曲线和ROC绘制的方法不一样。

PR曲线和ROC曲线区别参考链接:
http://www.fullstackdevel.com/computer-tec/data-mining-machine-learning/501.html

附:商汤计算PR题

#-*-coding:utf-8-*-
def s4j5(a):
    a1=float(int(a*100))
    tag=a*100-a1
    if tag>=0.5:
        return((a1+1)/100)
    else:
        return(a1/100)

N = int(raw_input())
recall = 0.0
labelCon = []
totalPos = 0
for i in range(N):
    temp = [xx for xx in raw_input().strip().split()]
    target, confidence = int(temp[0]), float(temp[0])
    labelCon.append([target, confidence])
    if target==1:
        totalPos+=1
count = 0
posCount = 0
correctCount = 0
FP = 0
FN = 0
someRecallDict = {0.3:0,
            0.4:0,
            0.5:0,
            0.6:0,
            0.7:0,
            0.8:0,
            0.9:0}

someRecall = [0.3,0.4,0.5,0.6,0.7,0.8,0.9]
res = []
posId = 0
predictPos = 0
for target, confidence in labelCon:
    count+=1
    if confidence>=0.5:
        predictPos+=1 # 预测为正类的样本个数
    if target==0:
        if confidence>=0.5:
            FP+=1
    if target==1:
        posCount+=1
        if confidence>=0.5:
            correctCount+=1
        else:
            FN+=1
        recall = float(correctCount)/float(totalPos)
        if posId<=6:
            if recall==someRecall[posId] and someRecallDict[someRecall[posId]]==0:
                someRecallDict[someRecall[posId]]=1
                posId+=1
                precision = int(str(s4j5(float(correctCount)/float(predictPos))*100).split('.')[0])
                res.append(precision)

for i in res:
    print(i)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148428.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 遍历map的key和value_有序的map集合

    遍历map的key和value_有序的map集合Golang map实现原理是hash map(核心元素是桶,key通过哈希算法被归入不同的bucket中),key是无序的,很多应用场景可能需要map key有序(例如交易所订单撮合),C++ 的stl map 实现了key有序,实际上是TreeMap是基于树(红黑树)的实现方式,即添加到一个有序列表,在O(log n)的复杂度内通过key值找到value,优点是空间要求低,但在时…

    2022年9月23日
    1
  • glassfish使用jndi 配置mq_glasses的用法

    glassfish使用jndi 配置mq_glasses的用法1.启动服务器。 ①直接运行bin目录下的asadmin.bat就可以②在bin目录运行asadminstart-domaindomain1(打开服务器)asadminstop-domaindomain1 (关闭服务器)

    2022年8月20日
    4
  • Laravel 7 新版本发布,新功能及更改

    Laravel 7 新版本发布,新功能及更改

    2022年2月15日
    42
  • ERROR 2003 (HY000): Can&#39;t connect to MySQL server on &#39;10.16.115.101&#39; (111)

    ERROR 2003 (HY000): Can&#39;t connect to MySQL server on &#39;10.16.115.101&#39; (111)

    2022年1月6日
    54
  • robots.txt文件详解「建议收藏」

    robots.txt文件详解「建议收藏」原文地址:robots.txt-禁止爬虫Robots.txt-禁止爬虫robots.txt用于禁止网络爬虫访问网站指定目录。robots.txt的格式采用面向行的语法:空行、注释行(以#打头)、规则行。规则行的格式为:Field:value。常见的规则行:User-Agent、Disallow、Allow行。User-Agent行User-Agent:r

    2022年5月6日
    83
  • redis的五种数据类型

    redis的五种数据类型一、百度百科1、简介(1)Redis(RemoteDictionaryServer远程字段服务)是一个开源的使用ANSIC语言编写、支持网络、科技与内存亦可持久化的日志型、key-value数据库,并提供多种语言的API。(2)Redis是一个key-value存储系统,它支持存储的value类型相对更多,包括string、list、set、zset(sortedset–有序集合)和hash。这些数据结构都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,

    2022年6月17日
    20

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号