使用pydicom实现Dicom文件读取与CT图像窗宽窗位调整

使用pydicom实现Dicom文件读取与CT图像窗宽窗位调整1.前言为了能够在Labelme上对Dicom图像进行编辑,这里对python环境下Dicom文件的读取进行了研究。在Dicom图像中CT的窗宽窗位是一个很重要的概念,但是找了半天在pydicom中没有相关设置函数,这里跟DCMTK还不一样。但是可以根据两个tag得到CT图像的CT值,那就是(0028|1052):rescaleintercept和(0028|1053):rescales…

大家好,又见面了,我是你们的朋友全栈君。

1. 前言

为了能够在Labelme上对Dicom图像进行编辑,这里对python环境下Dicom文件的读取进行了研究。在Dicom图像中CT的窗宽窗位是一个很重要的概念,但是找了半天在pydicom中没有相关设置函数,这里跟DCMTK还不一样。但是可以根据两个tag得到CT图像的CT值,那就是(0028|1052):rescale intercept和(0028|1053):rescale slope。则按照下面的算子得到CT图像,进而就可以调整窗宽窗位了

Hu = pixel * slope + intercept

至于那个部位的窗宽窗位是多少各位看官就可以自行百度了。

2. 代码实现

# -*- coding=utf-8 -*-
import matplotlib.pyplot as plt
import pydicom
import pydicom.uid
import sys
import PIL.Image as Image
from PyQt5 import QtGui
import os

step1:读取Dicom图像数据与得到CT值图像(CT图)

have_numpy = True

try:
    import numpy
except ImportError:
    have_numpy = False
    raise

sys_is_little_endian = (sys.byteorder == 'little')

NumpySupportedTransferSyntaxes = [
    pydicom.uid.ExplicitVRLittleEndian,
    pydicom.uid.ImplicitVRLittleEndian,
    pydicom.uid.DeflatedExplicitVRLittleEndian,
    pydicom.uid.ExplicitVRBigEndian,
]

# 支持的传输语法
def supports_transfer_syntax(dicom_dataset):
    """ Returns ------- bool True if this pixel data handler might support this transfer syntax. False to prevent any attempt to try to use this handler to decode the given transfer syntax """
    return (dicom_dataset.file_meta.TransferSyntaxUID in
            NumpySupportedTransferSyntaxes)


def needs_to_convert_to_RGB(dicom_dataset):
    return False


def should_change_PhotometricInterpretation_to_RGB(dicom_dataset):
    return False


# 加载Dicom图像数据
def get_pixeldata(dicom_dataset):
    """If NumPy is available, return an ndarray of the Pixel Data. Raises ------ TypeError If there is no Pixel Data or not a supported data type. ImportError If NumPy isn't found NotImplementedError if the transfer syntax is not supported AttributeError if the decoded amount of data does not match the expected amount Returns ------- numpy.ndarray The contents of the Pixel Data element (7FE0,0010) as an ndarray. """
    if (dicom_dataset.file_meta.TransferSyntaxUID not in
            NumpySupportedTransferSyntaxes):
        raise NotImplementedError("Pixel Data is compressed in a "
                                  "format pydicom does not yet handle. "
                                  "Cannot return array. Pydicom might "
                                  "be able to convert the pixel data "
                                  "using GDCM if it is installed.")

    # 设置窗宽窗位
    #dicom_dataset.

    if not have_numpy:
        msg = ("The Numpy package is required to use pixel_array, and "
               "numpy could not be imported.")
        raise ImportError(msg)
    if 'PixelData' not in dicom_dataset:
        raise TypeError("No pixel data found in this dataset.")

    # Make NumPy format code, e.g. "uint16", "int32" etc
    # from two pieces of info:
    # dicom_dataset.PixelRepresentation -- 0 for unsigned, 1 for signed;
    # dicom_dataset.BitsAllocated -- 8, 16, or 32
    if dicom_dataset.BitsAllocated == 1:
        # single bits are used for representation of binary data
        format_str = 'uint8'
    elif dicom_dataset.PixelRepresentation == 0:
        format_str = 'uint{}'.format(dicom_dataset.BitsAllocated)
    elif dicom_dataset.PixelRepresentation == 1:
        format_str = 'int{}'.format(dicom_dataset.BitsAllocated)
    else:
        format_str = 'bad_pixel_representation'
    try:
        numpy_dtype = numpy.dtype(format_str)
    except TypeError:
        msg = ("Data type not understood by NumPy: "
               "format='{}', PixelRepresentation={}, "
               "BitsAllocated={}".format(
                   format_str,
                   dicom_dataset.PixelRepresentation,
                   dicom_dataset.BitsAllocated))
        raise TypeError(msg)

    if dicom_dataset.is_little_endian != sys_is_little_endian:
        numpy_dtype = numpy_dtype.newbyteorder('S')

    pixel_bytearray = dicom_dataset.PixelData

    if dicom_dataset.BitsAllocated == 1:
        # if single bits are used for binary representation, a uint8 array
        # has to be converted to a binary-valued array (that is 8 times bigger)
        try:
            pixel_array = numpy.unpackbits(
                numpy.frombuffer(pixel_bytearray, dtype='uint8'))
        except NotImplementedError:
            # PyPy2 does not implement numpy.unpackbits
            raise NotImplementedError(
                'Cannot handle BitsAllocated == 1 on this platform')
    else:
        pixel_array = numpy.frombuffer(pixel_bytearray, dtype=numpy_dtype)
    length_of_pixel_array = pixel_array.nbytes
    expected_length = dicom_dataset.Rows * dicom_dataset.Columns
    if ('NumberOfFrames' in dicom_dataset and
            dicom_dataset.NumberOfFrames > 1):
        expected_length *= dicom_dataset.NumberOfFrames
    if ('SamplesPerPixel' in dicom_dataset and
            dicom_dataset.SamplesPerPixel > 1):
        expected_length *= dicom_dataset.SamplesPerPixel
    if dicom_dataset.BitsAllocated > 8:
        expected_length *= (dicom_dataset.BitsAllocated // 8)
    padded_length = expected_length
    if expected_length & 1:
        padded_length += 1
    if length_of_pixel_array != padded_length:
        raise AttributeError(
            "Amount of pixel data %d does not "
            "match the expected data %d" %
            (length_of_pixel_array, padded_length))
    if expected_length != padded_length:
        pixel_array = pixel_array[:expected_length]
    if should_change_PhotometricInterpretation_to_RGB(dicom_dataset):
        dicom_dataset.PhotometricInterpretation = "RGB"
    if dicom_dataset.Modality.lower().find('ct') >= 0:  # CT图像需要得到其CT值图像
        pixel_array = pixel_array * dicom_dataset.RescaleSlope + dicom_dataset.RescaleIntercept  # 获得图像的CT值
    pixel_array = pixel_array.reshape(dicom_dataset.Rows, dicom_dataset.Columns*dicom_dataset.SamplesPerPixel)
    return pixel_array, dicom_dataset.Rows, dicom_dataset.Columns

step2:对于CT图像设置窗宽窗位

# 调整CT图像的窗宽窗位
def setDicomWinWidthWinCenter(img_data, winwidth, wincenter, rows, cols):
    img_temp = img_data
    img_temp.flags.writeable = True
    min = (2 * wincenter - winwidth) / 2.0 + 0.5
    max = (2 * wincenter + winwidth) / 2.0 + 0.5
    dFactor = 255.0 / (max - min)

    for i in numpy.arange(rows):
        for j in numpy.arange(cols):
            img_temp[i, j] = int((img_temp[i, j]-min)*dFactor)

    min_index = img_temp < 0
    img_temp[min_index] = 0
    max_index = img_temp > 255
    img_temp[max_index] = 255

    return img_temp

step3:获取Dicom中的tag信息

第一种方式:

# 加载Dicom图片中的Tag信息
def loadFileInformation(filename):
    information = {}
    ds = pydicom.read_file(filename)
    information['PatientID'] = ds.PatientID
    information['PatientName'] = ds.PatientName
    information['PatientBirthDate'] = ds.PatientBirthDate
    information['PatientSex'] = ds.PatientSex
    information['StudyID'] = ds.StudyID
    information['StudyDate'] = ds.StudyDate
    information['StudyTime'] = ds.StudyTime
    information['InstitutionName'] = ds.InstitutionName
    information['Manufacturer'] = ds.Manufacturer
    print(dir(ds))
    print(type(information))
    return information

第二种方式

dcm = pydicom.dcmread(fileanme)  # 加载Dicom数据

print(dcm[0x0008, 0x0060])
>>(0008, 0060) Modality                            CS: 'MR'
print(dcm[0x0008, 0x0060].VR)
>>CS
print(dcm[0x0008, 0x0060].value)
>>MR

step4:Dicom图像数据转换为PIL.Image

dcm = pydicom.dcmread(fileanme)  # 加载Dicom数据
dcm_img = Image.fromarray(img_data)  # 将Numpy转换为PIL.Image
dcm_img = dcm_img.convert('L')

# 保存为jpg文件,用作后面的生成label用
dcm_img.save('temp.jpg')
# 显示图像
dcm_img.show()

3. 结果展示

调整了窗宽窗位的脑部CT图像:
这里写图片描述

4. 参考资料

  1. Pydicom User Guide
  2. 【医学影像】窗宽窗位与其处理方法
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148747.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • android Kotlin int类型和Long类型转换

    android Kotlin int类型和Long类型转换在Kotlin开发中,即使Long类型较大,int类型的数值也不会自动转换为long类型。这与Java处理数字转换的方式不同。例如;在Java中intnumber1=102;longnumber2=number1;//有效代码这里,number1类型的int值自动转换为类型long,并分配给变量number2。在Kotlin,valnumber1:Int=10…

    2022年5月28日
    128
  • TIFF文件切割_tif文件分割

    TIFF文件切割_tif文件分割TIFF文件由于可以存储多种形式的数据类型,也可以存储大量的数据,故其体积比较大,如果我们想截取其中的一部分图片数据,如下图:截取如下图部分:保存之后同样还是一个TIFF图片。1.自己定义了一个类实现头文件:#pragmaonce#include#include”tiflib.h”#include#include

    2025年6月22日
    2
  • C语言标识符关键字_c语言标识符关键字有哪些

    C语言标识符关键字_c语言标识符关键字有哪些一、关键字1.什么是关键字关键字就是C语言提供的有特殊含义的符号,有些地方也叫做“保留字”。 2.一共有哪些关键字C语言一共提供了32个关键字,这些关键字都被C语言赋予了特殊含义。autodoubleintstructbreakelselongswitchcaseenumregistertypedefcharexternreturn

    2022年10月3日
    3
  • dfs是什么意思_英语单词搜索软件

    dfs是什么意思_英语单词搜索软件给定一个 m x n 二维字符网格 board 和一个单词(字符串)列表 words,找出所有同时在二维网格和字典中出现的单词。单词必须按照字母顺序,通过 相邻的单元格 内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。示例 1:输入:board = [[“o”,”a”,”a”,”n”],[“e”,”t”,”a”,”e”],[“i”,”h”,”k”,”r”],[“i”,”f”,”l”,”v”]], words = [“oath”,

    2022年8月8日
    5
  • windows启动tomcat闪退

    windows启动tomcat闪退现象:windows下双击tomcat\bin\startup.bat时闪退原因:缺少环境变量导致解决方法:打开编辑tomcat\bin\startup.bat,头部加入以下代码,一个是JAVA目录,一个是Tomcat目录SETJAVA_HOME=C:\ProgramFiles\Java\jdk1.6.0_39SETTOMCAT_HOME=D:\hunk\work\apache-tomcat

    2022年5月30日
    60
  • hd2616

    hd2616

    2021年9月27日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号