MATLAB绘制B样条曲线[通俗易懂]

MATLAB绘制B样条曲线[通俗易懂]1B样条曲线1.1B样条曲线定义B样条方法具有表示与设计自由型曲线曲面的强大功能,是形状数学描述的主流方法之一,另外B样条方法是目前工业产品几何定义国际标准——有理B样条方法(NURBS)的基础。B样条方法兼备了Bezier方法的一切优点,包括几何不变性,仿射不变性等等,同时克服了Bezier方法中由于整体表示带来不具有局部性质的缺点(移动一个控制顶点将会影响整个曲线)。B样条曲线方程可写为

大家好,又见面了,我是你们的朋友全栈君。

1 B样条曲线

1.1 B样条曲线定义

B样条方法具有表示与设计自由型曲线曲面的强大功能,是形状数学描述的主流方法之一,另外B样条方法是目前工业产品几何定义国际标准——有理B样条方法(NURBS)的基础。B样条方法兼备了Bezier方法的一切优点,包括几何不变性,仿射不变性等等,同时克服了Bezier方法中由于整体表示带来不具有局部性质的缺点(移动一个控制顶点将会影响整个曲线)。B样条曲线方程可写为:

p(u)=i=0ndiNi,k(u)



其中,

di(i=0,1…n)
为控制顶点(坐标),

Ni,k(i=0,1…n)


k
次规范B样条基函数,最高次数是



k

。基函数是由一个称为节点矢量的非递减参数

u
的序列



U



u0u1...un+k+1
所决定的

k
次分段多项式。

B样条的基函数通常采用Cox-deBoor递推公式:




Ni,0(u)={1,  if  uiuui+10,  othersNi,k=uuiui+kuiNi,k1(u)+ui+k+1uui+k+1ui+1Ni+1,k1(u)define  00=0



式中

i
为节点序号,



k

是基函数的次数,共有

n+1
个控制顶点。
注意区分节点和控制顶点,节点是在节点矢量 U 中取得,控制顶点则是坐标点,决定B样条的控制多边形。Cox-deBoor递推公式是B样条曲线的定义的核心,该部分在程序中实现可采用递归的方式:

% BaseFunction.m文件
function Nik_u = BaseFunction(i, k , u, NodeVector)
% 计算基函数Ni,k(u),NodeVector为节点向量

if k == 0       % 0次B样条
    if (u >= NodeVector(i+1)) && (u < NodeVector(i+2))
        Nik_u = 1.0;
    else
        Nik_u = 0.0;
    end
else
    Length1 = NodeVector(i+k+1) - NodeVector(i+1);
    Length2 = NodeVector(i+k+2) - NodeVector(i+2);      % 支撑区间的长度
    if Length1 == 0.0       % 规定0/0 = 0
        Length1 = 1.0;
    end
    if Length2 == 0.0
        Length2 = 1.0;
    end
    Nik_u = (u - NodeVector(i+1)) / Length1 * BaseFunction(i, k-1, u, NodeVector) ...
        + (NodeVector(i+k+2) - u) / Length2 * BaseFunction(i+1, k-1, u, NodeVector);
end

所给程序可用于计算基函数

Ni,k(u)
的值,程序中对不同类型的B样条曲线区别在于节点矢量 NodeVector 的取值不同。

1.2 B样条曲线的分类

根据节点矢量中节点的分布情况不同,可以划分4中类型的B样条曲线:
1. 均匀B样条曲线
节点矢量中节点为沿参数轴均匀或等距分布。
2. 准均匀B样条曲线
其节点矢量中两端节点具有重复度 k+1 ,即 u0=u1=...=uk un+1=un+2=...=un+k+1 ,所有的内节点均匀分布,具有重复度1。
3. 分段Bezier曲线
其节点矢量中两端节点的重复度与类型2相同,为 k+1 。不同的是内节点重复度为 k 。该类型有限制条件,控制顶点数减1必须等于次数的正整数倍,即

nk=

4. 一般非均匀B样条曲线
对任意分布的节点矢量 U=[u0,u1...un+k+1] ,只要在数学上成立都可选取。

2 B样条曲线的绘制

2.1 节点矢量的确定

不同类型的B样条曲线区别主要在于节点矢量,对于具有 n+1 个控制顶点 (P0,P1,...,Pn) k 次B样条曲线,无论是哪种类型都具有

n+k+2
个节点 ([u0,u1...un+k+1])

$n=4,k=2时不同类型的节点矢量$

根据图示,三种类型的B样条曲线对应的节点矢量分别为:

[01727374757671]

[0 0 013231 1 1]

[0 0 012121 1 1]

需要注意的是分段Bezier曲线必须满足 nk=

这里给出准均匀B样条和分段Bezier曲线的生成节点矢量的代码,均匀B样条的很简单就不列出了。假设共n+1个控制顶点,k次B样条,输入参数为 n, k ,输出节点矢量NodeVector。


准均匀B样条曲线的节点矢量生成:

% U_quasi_uniform.m文件
function NodeVector = U_quasi_uniform(n, k)
% 准均匀B样条的节点向量计算,共n+1个控制顶点,k次B样条
NodeVector = zeros(1, n+k+2);
piecewise = n - k + 1;       % 曲线的段数
if piecewise == 1       % 只有一段曲线时,n = k
    for i = n+2 : n+k+2
        NodeVector(1, i) = 1;
    end
else
    flag = 1;       % 不止一段曲线时
    while flag ~= piecewise
        NodeVector(1, k+1+flag) = NodeVector(1, k + flag) + 1/piecewise;
        flag = flag + 1;
    end
    NodeVector(1, n+2 : n+k+2) = 1;
end

分段Bezier曲线的节点矢量生成:

% U_piecewise_Bezier.m文件
function NodeVector = U_piecewise_Bezier(n, k)
% 分段Bezier曲线的节点向量计算,共n+1个控制顶点,k次B样条
% 分段Bezier端节点重复度为k+1,内间节点重复度为k,且满足n/k为正整数

if ~mod(n, k) && (~mod(k, 1) && k>=1)   % 满足n是k的整数倍且k为正整数
    NodeVector = zeros(1, n+k+2);   % 节点矢量长度为n+k+2
    NodeVector(1, n+2 : n+k+2) = ones(1, k+1);  % 右端节点置1

    piecewise = n / k;      % 设定内节点的值
    Flg = 0;
    if piecewise > 1
        for i = 2 : piecewise
            for j = 1 : k
                NodeVector(1, k+1 + Flg*k+j) = (i-1)/piecewise;
            end
            Flg = Flg + 1;
        end
    end

else
    fprintf('error!\n');
end

2.2 B样条曲线的绘制

根据B样条曲线的定义公式,曲线上任一点坐标值是参数变量 u 的函数,用矩阵形式表示



p(u)=(d0d1dn)N0,k(u)N1,k(u)Nn,k(u)

只需要确定控制顶点 di 、曲线的次数 k 以及基函数

Ni,k(u)
,就完全确定了曲线。


B样条曲线的绘制函数:

% DrawSpline.m文件
function DrawSpline(n, k, P, NodeVector)
% B样条的绘图函数
% 已知n+1个控制顶点P(i), k次B样条,P是2*(n+1)矩阵存控制顶点坐标, 节点向量NodeVector
plot(P(1, 1:n+1), P(2, 1:n+1),...
                    'o','LineWidth',1,...
                    'MarkerEdgeColor','k',...
                    'MarkerFaceColor','g',...
                    'MarkerSize',6);
line(P(1, 1:n+1), P(2, 1:n+1));
Nik = zeros(n+1, 1);
for u = 0 : 0.005 : 1-0.005
    for i = 0 : 1 : n
        Nik(i+1, 1) = BaseFunction(i, k , u, NodeVector);
    end
    p_u = P * Nik;
    if u == 0
        tempx = p_u(1,1);
        tempy = p_u(2,1);
        line([tempx p_u(1,1)], [tempy p_u(2,1)],...
            'Marker','.','LineStyle','-', 'Color',[.3 .6 .9], 'LineWidth',3);
    else
        line([tempx p_u(1,1)], [tempy p_u(2,1)],...
            'Marker','.','LineStyle','-', 'Color',[.3 .6 .9], 'LineWidth',3);
        tempx = p_u(1,1);
        tempy = p_u(2,1);
    end
end

调用 DrawSpline(n, k, P, NodeVector) 函数就能绘制曲线,注意输入变量要正确。


下面给出绘制三种不同B样条曲线的命令流,可以参考比较每种类型之间的区别。

% 绘制三种类型的B样条曲线,需要前面所给的所有.m文件
clear all;
%控制顶点
P = [9.036145, 21.084337, 37.607573, 51.893287, 61.187608;
    51.779661, 70.084746, 50.254237, 69.745763, 49.576271];

n = 4; k = 2;

flag = 2;
% flag = 1,绘制均匀B样条曲线
% flag = 2, 绘制准均匀B样条曲线
% flag = 3, 绘制分段Bezier曲线

switch flag
    case 1
        NodeVector = linspace(0, 1, n+k+2); % 均匀B样条的节点矢量

        % 绘制样条曲线
        plot(P(1, 1:n+1), P(2, 1:n+1),...
                        'o','LineWidth',1,...
                        'MarkerEdgeColor','k',...
                        'MarkerFaceColor','g',...
                        'MarkerSize',6);
        line(P(1, 1:n+1), P(2, 1:n+1));
        Nik = zeros(n+1, 1);
        for u = k/(n+k+1) : 0.001 : (n+1)/(n+k+1)
            % for u = 0 : 0.005 : 1
            for i = 0 : 1 : n
                Nik(i+1, 1) = BaseFunction(i, k , u, NodeVector);
            end
        p_u = P * Nik;
        line(p_u(1,1), p_u(2,1), 'Marker','.','LineStyle','-', 'Color',[.3 .6 .9]);
        end
    case 2
        NodeVector = U_quasi_uniform(n, k); % 准均匀B样条的节点矢量
        DrawSpline(n, k, P, NodeVector);
    case 3
        NodeVector = U_piecewise_Bezier(n, k);  % 分段Bezier曲线的节点矢量
        DrawSpline(n, k, P, NodeVector);
    otherwise
        fprintf('error!\n');
end

三种类型的B样条曲线:
1. 均匀B样条曲线
均匀B样条曲线
2. 准均匀B样条曲线
准均匀B样条曲线
3. 分段Bezier曲线
分段Bezier曲线

参考文献:

[1] 施法中. 计算机辅助几何设计与非均匀有理B样条(修订版)[M]. 北京: 高等教育出版社, 2013 : 217-248.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/150361.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • oracle 错误01017,ORA-01017:用户名密码出错 故障实例「建议收藏」

    oracle 错误01017,ORA-01017:用户名密码出错 故障实例「建议收藏」sysdba登录ORA-01017:用户名密码出错故障排查实例早上接到一个朋友的急call,说是数据库的sys登录不了系统叻。普通用户连接可以登录,只要是assysdba就提示ORA-01017:用户名密码出错。很显然这是一个典型的sysdba登录的问题。首先要他查看了sqlnet文件。SQLNET.AUTHENTICATION_SERVICES=(NONE)启动密码文件验证了,接着查看…

    2022年5月31日
    79
  • IOC 的理解与解释

    IOC 的理解与解释IOC是什么?Ioc—InversionofControl,即“控制反转”,不是什么技术,而是一种设计思想。在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内

    2022年8月2日
    9
  • 几种页面跳转方法_HTML页面跳转的方法

    几种页面跳转方法_HTML页面跳转的方法页面跳转方式1——herf在一些html的文档中,用herf实现页面跳转的比较常见,也很好用。页面跳转方式2——利用表单action页面跳转方式3——response.sendRedirect(

    2022年8月5日
    23
  • 数据链路层学习之LLDP「建议收藏」

    一、LLDP协议概述 随着网络技术的发展,接入网络的设备的种类越来越多,配置越来越复杂,来自不同设备厂商的设备也往往会增加自己特有的功能,这就导致在一个网络中往往会有很多具有不同特性的、来自不同厂商的设备,为了方便对这样的网络进行管理,就需要使得不同厂商的设备能够在网络中相互发现并交互各自的系统及配置信息。 LLDP(LinkLayerDiscoveryProtocol,链路层发现协

    2022年4月3日
    106
  • leetcode-84柱状图中最大的矩形(单调栈)「建议收藏」

    leetcode-84柱状图中最大的矩形(单调栈)「建议收藏」原题链接给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。示例:输入: [2,1,5,6,2,3]输出: 10题解对于每一个长方体,找出左边比他小的第一个长方体和右边比他小的第一个长方体,然后遍历求结即可class Solution {public

    2022年8月8日
    4
  • GoLand 2021激活码 v1.0[在线序列号]

    GoLand 2021激活码 v1.0[在线序列号],https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月19日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号