矩阵向量中两两间欧式距离计算[通俗易懂]

矩阵向量中两两间欧式距离计算[通俗易懂]目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离欧氏距离公式:一般而言,我们常见的欧式距离计算公式如下:a,b对应的是两组不同的向量dist(a,b)=(a1−b1)2+(a2−b2)2+⋅⋅⋅(an−bn)2dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}}dist(a,b)=(a1​−b1​)2…

大家好,又见面了,我是你们的朋友全栈君。

目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离

欧氏距离公式:

  • 一般而言,我们常见的欧式距离计算公式如下:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + ⋅ ⋅ ⋅ ( a n − b n ) 2 dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}} dist(a,b)=(a1b1)2+(a2b2)2+(anbn)2
  • 事实上对于上面的公式如果我们通过向量的角度来考虑,就会变成是下列形式:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = d o t ( a , a ) − 2 ∗ d o t ( a , b ) + d o t ( b , b ) dist(a,b) = \sqrt{dot(a,a)-2*dot(a,b)+dot(b,b)} dist(a,b)=dot(a,a)2dot(a,b)+dot(b,b)

假设有下列矩阵 A A A:

  • A = [ a 1 a 2 a 3 b 1 b 2 b 3 ] {A}= \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] A=[a1b1a2b2a3b3]

  • 为了凑出上面的公式:

    • 先计算出 d o t ( A , A ) dot(A,A) dot(A,A) -> A A T {AA^T} AAT

      • A ‾ = [ a 1 a 2 a 3 b 1 b 2 b 3 ] [ a 1 b 1 a 2 b 2 a 3 b 3 ] = [ ( a 1 ) 2 + ( a 1 ) 2 + ( a 1 ) 2 ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \overline{A} = \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] \left[{\begin{array}{}{a{_1}}&{b{_1}} \\ {a{_2}}&{b{_2}} \\ {a{_3}}&{b{_3}} \end{array}}\right] = \left[{\begin{array}{}{(a{_1})^2+(a{_1})^2+(a{_1})^2}&{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} \\{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] A=[a1b1a2b2a3b3]a1a2a3b1b2b3=[(a1)2+(a1)2+(a1)2(a1)(b1)+(a2)(b2)+(a3)(b3)(a1)(b1)+(a2)(b2)+(a3)(b3)(b1)2+(b2)2+(b3)2]
    • A ‾ \overline{A} A对角线:

      • A ‾ . d i a g ( ) \overline{A}.diag() A.diag() = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
    • 对对角线矩阵进行一些变换

      • A ‾ 1 \overline{A}{_1} A1 = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] T \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right]^T [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]T [ 1 1 ] \left[{\begin{array}{}1 & 1\end{array}}\right] [11]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(a{_1})^2+(a{_2})^2+(a{_3})^2} \\ {(b{_1})^2+(b{_2})^2+(b{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • A ‾ 2 \overline{A}{_2} A2 = [ 1 1 ] T \left[{\begin{array}{}1 & 1\end{array}}\right]^T [11]T [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \\ {(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(b1)2+(b2)2+(b3)2]
    • 经过了上面的处理,我们就可以得出上述的公式了

      • d i s t ( A ) = A ‾ 1 + A ‾ 2 − 2 A ‾ dist(A) = {\overline{A}{_1}} + {\overline{A}{_2}} – {\overline{2A}} dist(A)=A1+A22A
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/150907.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • MySQL自定义函数实例「建议收藏」

    MySQL自定义函数实例「建议收藏」关于MySQL函数的基本内容,网上有很多的资料,仅在此整理一些有价值的sql实例,以方便自己阅读,见例子便知内容。1.求两点之间的距离?DELIMITER//CREATEFUNCTIONdistance_fn(x1DOUBLE,y1DOUBLE,x2DOUBLE,y2DOUBLE)RETURNSDOUBLEBEGINSET@distanc…

    2025年10月2日
    3
  • 图片标注工具LabelImg使用教程[通俗易懂]

    图片标注工具LabelImg使用教程[通俗易懂]前言我们知道,图片标注主要是用来创建自己的数据集,方便进行深度学习训练。本篇博客将推荐一款十分好用的图片标注工具LabelImg,重点介绍其安装以及使用的过程。在此感谢原作者在github所做的贡献,这款工具是全图形界面,用Python和Qt写的,最牛的是其标注信息可以直接转化成为XML文件,与PASCALVOC以及ImageNet用的XML是一样的。Ubuntu源码安装由于Ubuntu系统自带p

    2022年6月29日
    70
  • sit、qas、dev、pet「建议收藏」

    sit、qas、dev、pet「建议收藏」SIT:SystemIntegrateTest系统整合测试QAS:QualityAssurancesystem质量保证DEV:Development开发PET:PerformanceEvaluationTest性能测试

    2022年6月28日
    35
  • 什么是用户态和内核态_进程的用户态和内核态

    什么是用户态和内核态_进程的用户态和内核态要了解什么是用户态,什么是内核态,我们需要先了解什么是进程的用户空间和内核空间:Linux虚拟内存的大小为2^32(在32位的x86机器上),内核将这4G字节的空间分为两部分。最高的1G字节(从虚地址0xC0000000到0xFFFFFFFF)供内核使用,称为“内核空间”。而较低的3G字节(从虚地址0x00000000到0xBFFFFFFF),供各个进程使用,称为“用户空间”。也就是说,在这4G的…

    2022年9月15日
    4
  • idea202112激活码下载[最新免费获取]

    (idea202112激活码下载)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlS32PGH0SQB-eyJsaWNlbnNlSWQi…

    2022年3月25日
    56
  • 如何实现 请在微信客户端打开链接

    如何实现 请在微信客户端打开链接那就是判断useragentf(navigator.userAgent.match(/MicroMessenger/i)!=’MicroMessenger’){window.location.href=’wxerror.jsp’;}

    2022年6月7日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号