数据不平衡之SMOTE算法

数据不平衡之SMOTE算法在企业的数据分析中,很少会遇到正负样本数据比例平衡的状况。通常情况是,绝大多数为正样本,而只有极少数(几个或者十几个)负样本。在这种情况下,不论是用LR,SVM或者基于提升方法的随机森林,直接用该数据集进行学习的效果都不会太好,原因是这些方法的学习结果都会偏向于样本较多的一类。另一个方面,对学习结果进行评估时,假如正样本占95%,负样本仅占5%,这样甚至不需要学习,直接把所有新样本预测为正,准确率

大家好,又见面了,我是你们的朋友全栈君。

在企业的数据分析中,很少会遇到正负样本数据比例平衡的状况。通常情况是,绝大多数为正样本,而只有极少数(几个或者十几个)负样本。在这种情况下,不论是用LR,SVM或者基于提升方法的随机森林,直接用该数据集进行学习的效果都不会太好,原因是这些方法的学习结果都会偏向于样本较多的一类。另一个方面,对学习结果进行评估时,假如正样本占95%,负样本仅占5%,这样甚至不需要学习,直接把所有新样本预测为正,准确率就可以达到95%,而召回率却很低。因此,在学习一个模型前,处理不平衡的数据是十分必要的。

怎么让不平衡的数据变平衡呢?主要有两个方法,一是欠抽样,顾名思义就是删除正样本(以正样本占绝大多数为例)中的样本,删除的数量根据负样本的数量而定,这种方法的缺点也很明显,会删除正样本所带的信息,当正负样本的比例悬殊时,需要删除较多的正样本数量,这会减少很多正样本携带的信息。因此,最常用的方法是第二种——过抽样。

一种过抽样的方法是随机采样,采用简单随机复制样本来增加负样本的数量。这样容易产生模型的过拟合问题,即使得模型学习到的信息过于特别而不够泛化。另一种过抽样的方法就是要介绍的SMOTE算法,其基本思想是对少数类样本进行分析并根据少数类样本人工合成新样本添加到数据集中,算法流程如下。

(1)对于少数类中每一个样本x,以欧氏距离为标准计算它到少数类样本集中所有样本的距离,得到其k近邻。 
(2)根据样本不平衡比例设置一个采样比例以确定采样倍率N,对于每一个少数类样本x,从其k近邻中随机选择若干个样本,假设选择的
近邻为o。 

(3)对于每一个随机选出的近邻o,分别与原样本按照公式o(new)=o+rand(0,1)*(x-o)构建新的样本。


一个简单的python代码如下

# %load smote.py

import random
from sklearn.neighbors import NearestNeighbors
import numpy as np

class Smote:
    def __init__(self,samples,N=1,k=5):
        self.n_samples,self.n_attrs=samples.shape
        self.N=N
        self.k=k
        self.samples=samples
        self.newindex=0
       # self.synthetic=np.zeros((self.n_samples*N,self.n_attrs))

    def over_sampling(self):
        N=int(self.N)
        self.synthetic = np.zeros((self.n_samples * N, self.n_attrs))
        neighbors=NearestNeighbors(n_neighbors=self.k).fit(self.samples)
        print(‘neighbors’,neighbors)
        for i in range(len(self.samples)):
            nnarray=neighbors.kneighbors(self.samples[i].reshape(1,-1),return_distance=False)[0]
            #print nnarray
            self._populate(N,i,nnarray)
        return self.synthetic
    
    # for each minority class samples,choose N of the k nearest neighbors and generate N synthetic samples.
    def _populate(self,N,i,nnarray):
        for j in range(N):
            nn=random.randint(0,self.k-1)
            dif=self.samples[nnarray[nn]]-self.samples[i]
            gap=random.random()
            self.synthetic[self.newindex]=self.samples[i]+gap*dif
            self.newindex+=1
a=np.array([[1,2,3],[4,5,6],[2,3,1],[2,1,2],[2,3,4],[2,3,4]])
s=Smote(a,N=2)              #a为少数数据集,N为倍率,即从k-邻居中取出几个样本点
print(s.over_sampling())

数据不平衡之SMOTE算法


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151097.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pytest运行_python缓存机制

    pytest运行_python缓存机制前言pytest运行完用例之后会生成一个.pytest_cache的缓存文件夹,用于记录用例的ids和上一次失败的用例。方便我们在运行用例的时候加上–lf和–ff参数,快速运行上一

    2022年7月30日
    7
  • 同学说年薪30w豆瓣_朋友圈集赞怎么写

    同学说年薪30w豆瓣_朋友圈集赞怎么写我们经常在朋友圈中看到有人发这样的消息:或者,许久不联系的好友突然发消息说:「帮忙朋友圈第一条点赞~谢谢~」这样的朋友圈消息屡见不鲜,他们无非是想兑换一些不值钱的小奖品,来满足自己「占便宜」的心理。你…

    2022年9月5日
    3
  • Kali Linux 系统安装详细教程(VMware14)「建议收藏」

    Kali Linux 系统安装详细教程(VMware14)「建议收藏」文章出自个人博客https://knightyun.github.io/2018/04/15/kali-linux-install,转载目录一、KaliLinux介绍 1、Linux2、Kali二、虚拟机安装与配置 1、下载2、安装配置三、Kali系统安装与配置一、KaliLinux介绍1、Linux引用一下百度百科: Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于PO…

    2022年6月5日
    31
  • c++—-随机数算法

    c++—-随机数算法    本文转载:http://blog.csdn.net/luotuo44/article/details/33690179     相对于C++11之前的随机数生成器来说,C++11的随机数生成器是复杂了很多。这是因为相对于之前的只需srand、rand这两函数即可获取随机数来说,C++11提供了太多的选择和东西。 随机数生成算法:   &.

    2022年7月26日
    3
  • try-with-resource如何优雅的关闭io流[通俗易懂]

    try-with-resource如何优雅的关闭io流[通俗易懂]JAVA的一大特性就是JVM会对内部资源实现自动回收,即自动GC,给开发者带来了极大的便利。但是JVM对外部资源的引用却无法自动回收,例如数据库连接,网络连接以及输入输出IO流等,这些连接就需要我们手动去关闭,不然会导致外部资源泄露,连接池溢出以及文件被异常占用等。传统的手动释放外部资源一般放在一般放在try{}catch(){}finally{}机制的finally代码块中,因为finally代码块中语句是肯定会被执行的,即保证了外部资源最后一定会被释放。同时考虑到finally代码块中也有可能出现异

    2022年10月9日
    0
  • Git创建远程分支并提交代码到远程分支

    Git创建远程分支并提交代码到远程分支1、可以通过gitbranch-r命令查看远端库的分支情况如图所示,远程仓库只有一个master分支2、从已有的分支创建新的分支(如从master分支),创建一个dev分支但此时并没有在远程仓库上创建分支如图所示还是只有一个master分支3、建立本地到远端仓库的链接–这样代码才能提交上去使用命令行gitpush–set-…

    2022年6月30日
    20

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号