Word2vec负采样

Word2vec负采样下文中的模型都是以Skip-gram模型为主。1、论文发展word2vec中的负采样(NEG)最初由Mikolov在论文《DistributedRepresentationsofWordsandPhrasesandtheirCompositionality》中首次提出来,是Noise-ContrastiveEstimation(简写NCE,噪声对比估计)的简化版本…

大家好,又见面了,我是你们的朋友全栈君。

下文中的模型都是以Skip-gram模型为主。
 
1、论文发展
word2vec中的负采样(NEG)最初由 Mikolov在论文《Distributed Representations of Words and Phrases and their Compositionality》中首次提出来,是Noise-Contrastive Estimation(简写NCE,噪声对比估计)的简化版本。在论文中针对Skip-gram模型直接提出负采样的优化目标函数为:
Word2vec负采样
Word2vec负采样

Word2vec负采样

其中Pn(w)是目标词不是w的上下文的概率分布。
论文中没有给出证明,到了2014年,Yoav Goldberg在论文《word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method》里对上述目标函数给出了推导。
 
2、原始的skip-gram模型的目标函数
如果没有采用负采样的话,那么skip-gram模型的目标函数为:
Word2vec负采样
Word2vec负采样其中p(c|w)表示的是当前词预测到的目标上下文的概率最大,C(w)是目标词w的所有上下文集合。
相应地可以简化为
Word2vec负采样
Word2vec负采样
式中D是语料中所有单词和上下文的集合。
如果我们采用softmax函数的话,那么我们可以得到对应每个上下文的概率大小为:
Word2vec负采样
Word2vec负采样
其中Vc和Vw可以看成是对应词c和词w的词向量。关于如何得到这个式子可以参考后面,那么将该式子代入上式并取log可以得到:
Word2vec负采样
Word2vec负采样
对上述目标函数求最大化,可以让相似的词具有相似的向量值。
 
3、采用负采样的目标函数
但是对上述目标函数进行优化,第二项需要对词典里的所有词进行优化,所以计算量比较大。如果换个角度考虑,如果我们将正常的上下问组合看成是1,不正常的上下文组合看成是0,那么问题转换为二分类问题,那么我们目标就是最大化下面的目标函数。
Word2vec负采样
Word2vec负采样
将输出层的softmax函数改为sigmoid函数,那么
Word2vec负采样
Word2vec负采样
同样代入上式可以得到
Word2vec负采样
但是这个目标函数存在问题,如果Vc=Vw,并且VcxVw足够大的话,就能取到最大值,这样所有词向量都是一样的,得到的词向量没有意义。所以考虑负采样,即引入负样本,那么
Word2vec负采样
Word2vec负采样
Word2vec负采样
那么得到
Word2vec负采样
Word2vec负采样
则与Mikolov提出的式子是一致的。
 
4、如何推导得到目标函数
Word2vec负采样

 

Word2vec负采样
5、举例
以“今天|天气|非常|不错|啊”举例,假设上下文只有一个词,选择目标词是“天气”,那么出现的情况有:
今天|天气,非常|天气,不错|天气,啊|天气
由于我们假设上下文只有一个词,那么在这些情况中只有【今天|天气,非常|天气】是正确的样本。
当我们采用【今天|天气】这个样本时,我们希望输入【天气】,会输出标签【今天】,其他概率都是0。
 
对于原始的skip-gram模型来说,这对应是一个4分类问题,当输入【今天|天气】时,那么我们可能出现的概率是P(今天|天气)、P(非常|天气)、P(不错|天气)和P(啊|天气),我们的目标就是让P(今天|天气)这个概率最大,但是我们得同时计算其他三类的概率,并在利用反向传播进行优化的时候需要对所有词向量都进行更新。这样计算量很大,比如我们这里就要更新5*100=500个参数(假设词向量维度是100维的)。
 
但是如果采用负采样,当输入【今天|天气】时,我们从【非常|不错|啊】中选出1个进行优化,比如【不错|天气】,即我们只需计算P(D=1|天气,今天)和P(D=0|天气,不错),并且在更新的时候只更新【不错】、【天气】和【今天】的词向量,这样只需更新300个参数,计算量大大减少了。
 
6、参考资料
[1]word2vec Parameter Learning Explained
[2]word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method
[3]Note on Word Representation
[4]Distributed Representations of Words and Phrases and their Compositionality
 

 

转载于:https://www.cnblogs.com/linhao-0204/p/9126037.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151251.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • C51单片机–定时器实验

    C51单片机–定时器实验定时器文章目录定时器一、将交通灯实验中数码管倒计时1s改为定时器实现二、引入矩阵键盘,可以对路口红绿灯变换时间进行设置一、将交通灯实验中数码管倒计时1s改为定时器实现这个代码感觉逻辑上没问题,实际仿真出来倒计时的1s感觉要比实际的慢,可能是由于单片机执行语句时也需要耗费时间实验仿真图如下代码如下(示例):#include<reg51.h>#include<intrins.h>#defineuintunsignedint#defineucharun

    2022年7月16日
    16
  • networkx教程

    networkx教程创建一个图创建一个没有节点和边的空图 importnetwor nx Graph 根据定义 a nbsp Graph 是节点 顶点 的集合以及确定的节点对 称为边 链接等 在 NetworkX 中 节点可以是任何可哈希对象 例如文本字符串 图像 XML 对象 另一个 Graph 自定义节点对象等 节点该图 G 可以以几种方式生长 NetworkX 包含许多图形生成器功能和设施 以多种格式读取和写

    2025年8月30日
    4
  • 静态变量存储在那个区? – 转[通俗易懂]

    静态变量存储在那个区? – 转[通俗易懂]一时间忘咯然后就去转载..静态变量存储在__区A全局区B堆C栈D常量区参考答案:A知识点内存到底分几个区?1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由os回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。3、全局区(静态区)(static)—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域…

    2022年6月14日
    46
  • pycharm2021 激活码破解方法

    pycharm2021 激活码破解方法,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月14日
    69
  • python format()函数的用法

    python format()函数的用法Pythonformat()函数的用法复制自博主 chunlaipiupiupiu 的博客,如有侵权,请联系删除python中format函数用于字符串的格式化通过关键字

    2022年7月6日
    20
  • SQLServer中的死锁的介绍

    SQLServer中的死锁的介绍

    2021年11月26日
    49

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号