Pytorch 转置卷积

Pytorch 转置卷积环境使用Kaggle里免费建立的Notebook教程使用李沐老师的动手学深度学习网站和视频讲解小技巧:当遇到函数看不懂的时候可以按查看函数详解。卷积不会增大输入的高和宽,通常要么不变,要么减半。而转置卷积则可以用来增大输入高宽。假设忽略通道,步幅为1且填充为0。输入张量形状为nh×nwn_h\timesn_wnh​×nw​,卷积核形状为kh×kwk_h\timesk_wkh​×kw​。共产生nhnwn_hn_wnh​nw​个中间结果。每个中间结果都是一个(nh+k

大家好,又见面了,我是你们的朋友全栈君。

Pytorch 转置卷积

0. 环境介绍

环境使用 Kaggle 里免费建立的 Notebook

教程使用李沐老师的 动手学深度学习 网站和 视频讲解

小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。

1. 转置卷积(transposed convolution)

卷积不会增大输入的高和宽,通常要么不变,要么减半。而转置卷积则可以用来增大输入高宽。
在这里插入图片描述
假设忽略通道,步幅为 1 且填充为 0。输入张量形状为 n h × n w n_h \times n_w nh×nw,卷积核形状为 k h × k w k_h \times k_w kh×kw。共产生 n h n w n_hn_w nhnw 个中间结果。每个中间结果都是一个 ( n h + k h − 1 ) × ( n w + k w − 1 ) (n_h+k_h-1)\times(n_w+k_w-1) (nh+kh1)×(nw+kw1) 的张量(初始化为 0)。计算中间张量的方法:输入张量中的每个元素乘以卷积核,得到 k h × k w k_h \times k_w kh×kw 的张量替换中间张量的一部分。
每个中间张量被替换部分的位置与输入张量中元素的位置相对应。 最后,所有中间结果相加以获得最终结果。

中间张量计算公式如下
Y [ i : i + h , j : j + w ] + = X [ i , j ] ∗ K Y[i: i + h, j: j + w] += X[i, j] * K Y[i:i+h,j:j+w]+=X[i,j]K

1.1 为什么称之 “转置” ?

对于卷积 Y = X ★ W Y = X ★ W Y=XW ★ ★ 表示卷积操作)

  • 可以对 W W W 构造一个 V V V,使得卷积等价于矩阵乘法 Y ′ = V X ′ Y^{\prime} = VX^{\prime} Y=VX
  • 这里 Y ′ 和 X ′ Y^{\prime} 和 X^{\prime} YX Y , X Y, X Y,X 对应的向量版本。

转置卷积则等价于 Y ′ = V T X ′ Y^{\prime} = V^TX^{\prime} Y=VTX
如果卷积将输入从 ( h , w ) (h, w) (h,w) 变成了 ( h ′ , w ′ ) (h^{\prime}, w^{\prime}) (h,w)

  • 同样超参数的转置卷积则从 ( h ′ , w ′ ) (h^{\prime}, w^{\prime}) (h,w) 变成了 ( h , w ) (h, w) (h,w)

2. 转置卷积实现

2.1 转置卷积

!pip install -U d2l
import torch
from torch import nn
from d2l import torch as d2l
def trans_conv(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y
X = torch.tensor([[0.0, 1.0], 
				  [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], 
                  [2.0, 3.0]])
trans_conv(X, K)

在这里插入图片描述

2.2 API 实现

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
# 前两个参数代表输入通道数, 输出通道数
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)

在这里插入图片描述

2.3 填充,步幅和多通道

与常规卷积不同,在转置卷积中,填充被应用于的输出(常规卷积将填充应用于输入)。 例如,当将高和宽两侧的填充数指定为1时,转置卷积的输出中将删除第一和最后的行与列。

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)

在这里插入图片描述

在转置卷积中,步幅被指定为中间结果(输出),而不是输入。

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
tconv(X)

在这里插入图片描述

在这里插入图片描述

输入 X X X 的形状,经过卷积后,再经过转置卷积后的形状与原形状相同:

X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape

在这里插入图片描述

2.4 与矩阵变换的联系

X = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], 
	              [3.0, 4.0]])
Y = d2l.corr2d(X, K)
Y

在这里插入图片描述

将卷积核 K K K 重写为包含大量 0 0 0 的稀疏权重矩阵 W W W 4 × 9 4 \times 9 4×9):

def kernel2matrix(K):
    k, W = torch.zeros(5), torch.zeros((4, 9))
    k[:2], k[3:5] = K[0, :], K[1, :]
    W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
    return W

W = kernel2matrix(K)
W

在这里插入图片描述

Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2)

在这里插入图片描述

Z = trans_conv(Y, K)
Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3)

在这里插入图片描述

3. 再谈转置卷积

转置卷积是一种卷积

  • 它将输入和核进行了重新排列
  • 同卷积一般是做下采样(将高和宽变得更小),而转置卷积通常用作上采样(输出高宽变大)
  • 如果卷积将输入从 ( h , w ) (h, w) (h,w) 变成了 ( h ′ , w ′ ) (h^{\prime}, w^{\prime}) (h,w),同样超参数下转置卷积将 ( h ′ , w ′ ) (h^{\prime}, w^{\prime}) (h,w) 变成 ( h , w ) (h, w) (h,w)

注:
下采样:由输入图片得到特征图
上采样:由特征图得到预测图

3.1 重新排列输入和核

当填充为 0 0 0,步幅为 1 1 1

  • 将输入填充 k − 1 k-1 k1 k k k 是核窗口)
  • 将核矩阵上下、左右翻转
  • 然后做正常卷积(填充 0 0 0, 步幅 1 1 1

( p , s ) = ( 0 , 1 ) (p,s) = (0, 1) (ps)=(0,1)
在这里插入图片描述

当填充为 p p p,步幅为 1 1 1

  • 将输入填充 k − p − 1 k-p-1 kp1 k k k 是核窗口)
  • 将核矩阵上下、左右翻转
  • 然后做正常卷积(填充 0 0 0、步幅 1 1 1

( p , s ) = ( 1 , 1 ) (p,s) = (1, 1) (ps)=(1,1)
在这里插入图片描述

当填充为 p p p,步幅为 s s s

  • 在行和列之间插入 s − 1 s-1 s1 行和列
  • 将输入填充 k − p − 1 k-p-1 kp1 k k k 是核窗口)
  • 将核矩阵上下、左右翻转
  • 然后做正常卷积(填充 0 0 0、步幅 1 1 1

( p , s ) = ( 0 , 2 ) (p,s) = (0, 2) (ps)=(0,2)
在这里插入图片描述

3.2 形状换算

输入高(宽)为 n n n,核 k k k,填充 p p p,步幅 s s s
转置卷积: n ′ = s n + k − 2 p − s n^{\prime} = sn + k -2p – s n=sn+k2ps

  • 卷积: n ′ = ⌊ ( n − k − 2 p + s ) / s ⌋ → n ≥ s n ′ + k − 2 p − s n^{\prime} = \lfloor(n-k-2p+s)/s\rfloor \to n \ge sn^{\prime} +k -2p -s n=(nk2p+s)/snsn+k2ps

如果让高宽成倍增加,那么 k = 2 p + s k=2p+s k=2p+s

3.3 转置卷积与反卷积的关系

数学上的反卷积(deconvolution)是指卷积的逆运算

  • 如果 Y = c o n v ( X , K ) Y=conv(X, K) Y=conv(X,K),那么 X = d e c o n v ( Y , K ) X = deconv(Y, K) X=deconv(Y,K)

反卷积很少用在深度学习中

  • 我们说的反卷积神经网络指的是用了转置卷积的神经网络
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151945.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 在linux里如何建立一个快捷方式,连接到另一个目录

    在linux里如何建立一个快捷方式,连接到另一个目录

    2021年10月27日
    50
  • 对比HTML和XML[通俗易懂]

    对比HTML和XML[通俗易懂]对比HTML和XML

    2022年4月24日
    57
  • httprunner(5)编写测试用例

    httprunner(5)编写测试用例编写测试用例HttpRunnerv3.x支持三种测试用例格式pytest,YAML和JSON。官方强烈建议以pytest格式而不是以前的YAML/JSON格式编写和维护测试用例格式关系如下图所示

    2022年7月31日
    6
  • 火狐的Http请求插件的安装和使用[通俗易懂]

    火狐的Http请求插件的安装和使用[通俗易懂]火狐有一个http请求插件,安装之后就可以用它来测试各种http请求了(GET/POST/PUT/DELETE)。安装步骤如下:1、打开火狐的附加组件管理器2、在左边菜单栏选择插件3、在搜索栏搜索httpRequest4、选择并安装,然后重启浏览器5、以上步骤完成后,在浏览器右上角就已经出现该插件了6、点击它即可打开,然后就可以模拟http请求了…

    2022年6月15日
    71
  • 关于时序数据库[通俗易懂]

    关于时序数据库[通俗易懂]https://blog.csdn.net/ransom0512/article/details/78114167看了一些时序数据库,没有太深入,有一些大概认识,记录下来。 1.  核心数据存储分为行存储或者列存储,由于列存储的高压缩比,现在使用列存储的比较多一些。当前有很多时序数据库采用了在底层KV存储(Cadssandra,HBase,LevelDB,RocksDB)基础…

    2022年10月5日
    2
  • MySQL中聚集索引、非聚集索引、联合索引、覆盖索引[通俗易懂]

    MySQL中聚集索引、非聚集索引、联合索引、覆盖索引[通俗易懂]在《面试官:为啥加了索引查询会变快?》一文中,我们介绍了索引的数据结构,正是因为索引使用了B+树,才使得查询变快。说白了,索引的原理就是减少查询的次数、减少磁盘IO,达到快速查找所需数据的目的我们一起来看一下InnoDB存储引擎中的索引聚集索引聚集索引(clusteredindex)就是按照每张表的主键构造一棵B+树,同时叶子节点中存放的即为整张表的行记录数据,也将聚集索引的叶子节点称为数据页。聚集索引的这个特性决定了索引组织表中数据也是索引的一部分(备注:真实的B+树叶子节点是通过链表相连的,

    2022年6月4日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号