RNN BPTT算法推导

RNN BPTT算法推导BPTT(沿时反向传播算法)基本原理与BP算法一样,包含三个步骤:前向计算每个神经元的输出值反向计算每个神经元的误差项δjδ_jδj​,它是误差函数E对神经元j的加权输入netjnet_jnetj​的偏导数计算每个权重的梯度最后再用随机梯度下降算法更新权重循环曾如图所示:1.1前向计算循环层的前向计算:隐层:st=f(Uxt+Wst−1)s_t=f(Ux_t+Ws_{t-1})…

大家好,又见面了,我是你们的朋友全栈君。

BPTT(沿时反向传播算法)基本原理与BP算法一样,包含三个步骤:

  • 前向计算每个神经元的输出值
  • 反向计算每个神经元的误差项 δ j δ_j δj,它是误差函数E对神经元j的加权输入 n e t j net_j netj的偏导数
  • 计算每个权重的梯度
  • 最后再用随机梯度下降算法更新权重
    循环曾如图所示:
    在这里插入图片描述
    1.1前向计算
    循环层的前向计算:
    隐层: s t = f ( U x t + W s t − 1 ) s_t=f(Ux_t+Ws_{t-1}) st=f(Uxt+Wst1)
    1.2误差项的计算
    BPTT算法将第l层t时刻的误差项 δ t l δ_t^l δtl值沿两个方向传播,一个方向时传递到上一层网络,得到 δ t l − 1 δ_t^{l-1} δtl1,这部分只和权重矩阵U有关;另一方向是将其沿着时间线传递到初始 t 1 t_1 t1时刻,得到 δ 1 l δ_1^l δ1l,这部分只和权重矩阵W有关。
    用向量 n e t j net_j netj表示神经元在t时刻的加权输入:
    n e t j = U x t + W s t − 1 net_j=Ux_t+Ws_{t-1} netj=Uxt+Wst1
    s t − 1 = f ( n e t t − 1 ) s_{t-1}=f(net_{t-1}) st1=f(nett1)
    因此:
    ∂ n e t t ∂ n e t t − 1 = ∂ n e t t ∂ s t − 1 ∂ s t − 1 ∂ n e t t − 1 \frac{\partial net_t}{\partial net_{t-1}}=\frac{\partial net_t}{\partial s_{t-1}}\frac{\partial s_{t-1}}{\partial net_{t-1}} nett1nett=st1nettnett1st1
    ∂ n e t t ∂ s t − 1 = W \frac{\partial net_t}{\partial s_{t-1}}=W st1nett=W
    第二项是一个jacobian矩阵
    在这里插入图片描述
    在这里插入图片描述
    最后,将两项合在一起,可得:
    ∂ n e t t ∂ n e t t − 1 = ∂ n e t t ∂ s t − 1 ∂ s t − 1 ∂ n e t t − 1 = W ∗ d i a g [ f ′ ( n e t t − 1 ) ] \frac{\partial net_t}{\partial net_{t-1}}=\frac{\partial net_t}{\partial s_{t-1}}\frac{\partial s_{t-1}}{\partial net_{t-1}}=W*diag[f^{'} (net_{t-1})] nett1nett=st1nettnett1st1=Wdiag[f(nett1)]
    上式描述了将 δ \delta δ沿时间向前传递一个时刻的规律,可以求的任意时刻k的误差项 δ k \delta_k δk:
    在这里插入图片描述
    这就是将误差项沿着时间反向传播的算法。

循环层将误差项反向传递到上一层网络,与普通的全连接层是完全一样的。
循环层的加权输入 n e t l net^l netl与上一层的加权输入 n e t l − 1 net^{l-1} netl1关系如下:
n e t t l = U a t l − 1 + W s t − 1 net^l_t=Ua^{l-1}_t+Ws_{t-1} nettl=Uatl1+Wst1
a t l − 1 = f l − 1 ( n e t t l − 1 ) a^{l-1}_t=f^{l-1}(net^{l-1}_t) atl1=fl1(nettl1)
上式中 n e t t l net^l_t nettl是第l层神经元的加权输入; n e t t l − 1 net^{l-1}_t nettl1是l-1层神经元的加权输入; a t l − 1 a^{l-1}_t atl1是第l-1层神经元的输出; f l − 1 f^{l-1} fl1是第l-1层的激活函数。
∂ n e t t l ∂ n e t t l − 1 = ∂ n e t t l ∂ a t l − 1 ∂ a t l − 1 ∂ n e t t l − 1 = U ∗ d i a g [ f ′ l − 1 ( n e t t l − 1 ) ] \frac{\partial net^l_t}{\partial net^{l-1}_t}=\frac{\partial net^l_t}{\partial a^{l-1}_t}\frac{\partial a^{l-1}_t}{\partial net^{l-1}_t}=U*diag[f^{'l-1}(net^{l-1}_t)] nettl1nettl=atl1nettlnettl1atl1=Udiag[fl1(nettl1)]
所以:
δ t l − 1 = ∂ E ∂ n e t t l − 1 = ∂ E ∂ n e t t l ∂ n e t t l ∂ n e t t l − 1 = δ t l ∗ U ∗ d i a g [ f ′ l − 1 ( n e t t l − 1 ) ] \delta^{l-1}_t=\frac{\partial E}{\partial net^{l-1}_t}=\frac{\partial E}{\partial net^l_t}\frac{\partial net^l_t}{\partial net^{l-1}_t}=\delta^l_t*U*diag[f^{'l-1}(net^{l-1}_t)] δtl1=nettl1E=nettlEnettl1nettl=δtlUdiag[fl1(nettl1)]
上式就是将误差项传递到上一层算法。
1.3权重梯度的计算
接下来是BPTT算法的最后一步:计算每个权重的梯度
首先计算误差函数E对权重矩阵W的梯度: ∂ E ∂ W \frac{\partial E}{\partial W} WE
在这里插入图片描述
上图为我们前两步计算得到的量,包括每个时刻t循环层的输出值 s t s_t st,以及误差项 δ t \delta_t δt
我们知道了任意一个时刻的误差项 δ t \delta_t δt,以及上一个时刻循环层的输出值 s t − 1 s_{t-1} st1,就可以按照下面的公式求出权重矩阵在t时刻的梯度:
在这里插入图片描述
上式中, δ i t \delta^t_i δit表示t时刻误差项向量的第i各分量,即第i层的误差项;KaTeX parse error: Double subscript at position 8: s_{t-1}_̲i表示t-1时刻循环层第i各神经元的输出值。
权重梯度推导:
在这里插入图片描述
1.4梯度爆炸与梯度消失

RNNs并不能很好地处理较长的序列。主要原因是RNN在训练中很容易发生梯度爆炸和梯度消失,导致训练时梯度不能在较长序列中一直传递下去,从而使RNN无法捕捉到长距离的影响。
三种方法应对梯度消失问题:
1)合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大或极小值,以躲开梯度消失的区域。
2)使用Relu代替sigmod和tanh作为激活函数。
3)使用其它结构的RNNs,比如长短时记忆网络(LSTM)和Gated Recurrent Unit(GRU),这是最流行的做法。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152300.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java数组定义长度_JAVA数组的定义

    java数组定义长度_JAVA数组的定义JAVA一维数组一,注意不可添加数组元素不可改变数组长度一个数组中的说有元素必须数据类型相同二,创建方法三种1直接添加元素类型[]数组名={元素,元素,元素,……};int[]arr={1,2,3,4};2先定义数组长度再添加元素类型[]数组名=new类型[长度];int[]arr=[2];arr[0]=1;arr[1]=2;与此方法类似的int[]arr;arr=newin…

    2022年5月29日
    51
  • tess4j验证码识别

    tess4j验证码识别tess4j的安装和使用参考:https://www.cnblogs.com/cmyxn/p/6993422.htmltess4j提高识别率1.对称近邻均值滤波参考:http://blog.csdn.net/fangbinwei93/article/details/505624492.指定config为digits,并修改tessdata\configs\digits文件,将白名单中设置…

    2022年6月12日
    57
  • H.264/MPEG-4 AVC学习

    H.264/MPEG-4 AVC学习转自:https://www.freehacker.cn/media/codec-h264/简述H.264,又称为MPEG-4第10部分,高级视频编码(英语:MPEG-4Part10,AdvancedVideoCoding,缩写为MPEG-4AVC)是一种面向块的基于运动补偿的视频编码标准。对于视频序列样本来说,使用H.264编码器能够比使用有运动补偿的MPEG-…

    2022年9月19日
    0
  • 原生js数组排序

    原生js数组排序原生js数组排序js排序以正序为例(即由小到大)vararr=[0,2,1,4,3,9,6,5,7,8];//未排序的数组varsortArr=null;//排序后得到的数组1sort排序sortArr=arr.sort(function(a,b){ returna-b})sort是es3增加的数组方法,大家可以放心使用(支持到ie…

    2022年6月12日
    33
  • 主流芯片解决方案Ambarella的高清网络摄像机、德州仪器和控制海思

    主流芯片解决方案Ambarella的高清网络摄像机、德州仪器和控制海思

    2022年1月17日
    59
  • 小众网java下载_jar应用下载

    小众网java下载_jar应用下载全版本都有包含:windows、Linux、源码等,根据名称进行挑选、下载!网址:https://jbossas.jboss.org/downloads/如何解决了您的问题,欢迎关注我!还希望来JAVAWEB开发交流群:958923746,有问题欢迎共享,共同提升!…

    2022年10月3日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号