RPN网络讲解

RPN网络讲解讲完了anchor机制,接下来我们讲RPN(regionproposalnetwork)区域候选网络。_build_network:https://github.com/endernewton/tf-faster-rcnn/blob/master/lib/nets/network.py原理解释FeatureMap进入RPN后,先经过一次33的卷积,同样,特征图大小依然是6040,数量…

大家好,又见面了,我是你们的朋友全栈君。

讲完了anchor机制,接下来我们讲RPN(region proposal network)区域候选网络,它的作用是为了得到候选框。
先看以下内容:
faster rcnn结构及代码讲解

原理解释

Feature Map进入RPN后,先经过一次33的卷积,同样,特征图大小依然是6040,数量512,这样做的目的应该是进一步集中特征信息,接着看到两个全卷积,即kernel_size=1*1,p=0,stride=1;
RPN
如上图中标识:

① rpn_cls:60*40*512-d ⊕ 1*1*512*18 ==> 60*40*9*2
逐像素对其9个Anchor box进行二分类

② rpn_bbox:60*40*512-d ⊕ 1*1*512*36==>60*40*9*4
逐像素得到其9个Anchor box四个坐标信息(其实是偏移量,后面介绍)

如下图所示:
在这里插入图片描述

代码解析

这段代码基本上就是第一张图,代码注意看注释:

def _region_proposal(self, net_conv, is_training, initializer):
    rpn = slim.conv2d(net_conv, cfg.RPN_CHANNELS, [3, 3], trainable=is_training, weights_initializer=initializer,
                        scope="rpn_conv/3x3")#cfg.RPN_CHANNELS = 512, 3*3卷积处理,cfg.RPN_CHANNELS = 512,output shape=(1, 60, 40, 512)
    self._act_summaries.append(rpn)#可视化保存
    rpn_cls_score = slim.conv2d(rpn, self._num_anchors*2, [1, 1], trainable=is_training,weights_initializer=initializer,
                   padding='VALID', activation_fn=None, scope='rpn_cls_score')
    #1*1卷积处理,分类,是否为前景,self._num_anchors=9,ouput shape=(1, 60, 40, 18)
    rpn_cls_score_reshape = _reshape_layer(self, rpn_cls_score, 2, 'rpn_cls_score_reshape')#后面需要进行softmax和argmax
    # change it so that the score has 2 as its channel size
    #shape=(1, 540, 40, 2),540=9*60
    #该函数后面有详细讲解
    rpn_cls_prob_reshape = _softmax_layer(self, rpn_cls_score_reshape, "rpn_cls_prob_reshape")
    #(1, 540, 40, 2)
    #该函数后面有详细讲解
    rpn_cls_pred = tf.argmax(tf.reshape(rpn_cls_score_reshape, [-1, 2]), axis=1, name="rpn_cls_pred")
    #tf.reshape=>shape=(21600, 2) output shape=(21600,)
    rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob")
    #shape=(1, 60, 40, 18)
    #该函数后面有详细讲解
    rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training,
                                weights_initializer=initializer,
                                padding='VALID', activation_fn=None, scope='rpn_bbox_pred')
    # shape=(1, 60, 40, 36), 注意这里预测的不是 left, bottom, right, top而是anchor与真实框之间的误差值。
    if is_training:
      rois, roi_scores = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      #输出roi shape=(1*60*40*9,5)以及roi_scores shape=(1*60*40*9,1)
      #该函数后面有详细讲解
      rpn_labels = self._anchor_target_layer(rpn_cls_score, "anchor")
      #rpn_cls_score 在这个函数,只提取了它的H,W
      # Try to have a deterministic order for the computing graph, for reproducibility
      #这个函数主要生成标签
      #该函数后面有详细讲解
      with tf.control_dependencies([rpn_labels]):
        rois, _ = self._proposal_target_layer(rois, roi_scores, "rpn_rois")
        #该函数后面有详细讲解
    else:
      if cfg.TEST.MODE == 'nms':
        rois, _ = self._proposal_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      elif cfg.TEST.MODE == 'top':
        rois, _ = self._proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, "rois")
      else:
        raise NotImplementedError

    self._predictions["rpn_cls_score"] = rpn_cls_score
    self._predictions["rpn_cls_score_reshape"] = rpn_cls_score_reshape
    self._predictions["rpn_cls_prob"] = rpn_cls_prob
    self._predictions["rpn_cls_pred"] = rpn_cls_pred
    self._predictions["rpn_bbox_pred"] = rpn_bbox_pred
    self._predictions["rois"] = rois

    return rois

以上代码得到了6个后续主要所需值:
1.rpn_cls_score:分类分数,shape=(1, 60, 40, 2*9)
2.rpn_cls_score_reshape:分类分数,shape=(1, 540, 40, 2)
3.rpn_cls_prob:分类分概率,shape=(1, 60, 40, 18)
4.rpn_cls_pred:分类预测,shape=(21600, 2)
5.rpn_bbox_pred:shape=(1, 60, 40, 36),输出框,输出形式为[ Δ x \Delta x Δx, Δ y \Delta y Δy, Δ w \Delta w Δw, Δ h \Delta h Δh],为误差值。误差值的计算方式:
  anchor box: 中心点位置坐标 x a x_a xa, y a y_a ya和宽高 w a w_a wa, h a h_a ha
  ground truth(真实框):标定的框也对应一个中心点位置坐标 x ∗ x^* x, y ∗ y^* y和宽高 w ∗ w^* w, h ∗ h^* h
  所以,偏移量:
   Δ x = ( x ∗ − x a ) / h a \Delta x=(x^*-x_a)/h_a Δx=(xxa)/ha Δ y = ( y ∗ − y a ) / h a \Delta y=(y^*-y_a)/h_a Δy=(yya)/ha
   Δ w = l o g ( w ∗ / w a ) \Delta w=log(w^*/w_a) Δw=log(w/wa) Δ h = l o g ( h ∗ / h a ) \Delta h=log(h^*/h_a) Δh=log(h/ha)
6.rois

深入代码解析

  同时,这段代码有5个函数需要深入了解以下:
1._reshape_layer:改变输入层的shape
2._softmax_layer:进行softmax
3._proposal_layer:提取ROI
4._anchor_target_layer:打标签
5._proposal_target_layer:打标签
  前两篇博客,将在本篇博客进行讲解,后三个点链接

1._reshape_layer

  def _reshape_layer(self, bottom, num_dim, name):
    input_shape = tf.shape(bottom)
    with tf.variable_scope(name) as scope:
      # change the channel to the caffe format
      #之所以怎么做,是想把第3维度和第1维放在一起好做做个处理
      to_caffe = tf.transpose(bottom, [0, 3, 1, 2])
      
      # then force it to have channel 2
      #注意看tf.concat里面,num_dim为输入值,-1自己算
      reshaped = tf.reshape(to_caffe,
                            tf.concat(axis=0, values=[[1, num_dim, -1], [input_shape[2]]]))
                     
      # then swap the channel back
      to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
      return to_tf
      #以下我们举个栗子:shape的前后变化(1, 60, 40, num_dim*9)=>(1, 60*9, 40, num_dim)

2._softmax_layer

  def _softmax_layer(self, bottom, name):
    if name.startswith('rpn_cls_prob_reshape'):
    #rpn_cls_prob_reshape层进入if语句,因为需要变形,再softmax
      input_shape = tf.shape(bottom)
      bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]])
      #(1, 540, 40, 2)=>(1*540*40, 2)
      reshaped_score = tf.nn.softmax(bottom_reshaped, name=name)
      return tf.reshape(reshaped_score, input_shape)
    return tf.nn.softmax(bottom, name=name)

其实就是简单的softmax语句其中有一个if语句

3._proposal_layer
主要进行了box的修正(通过我们预测的误差值),nms的筛选和超出原图的裁剪。详细见:
https://blog.csdn.net/m0_37663944/article/details/103728902

4._anchor_target_layer
主要根据真实框与anchor的iou值进行了筛选,打标签(分类0,1,然后得出回归预测的误差值等)。这一部分得出的值是用来训练的,训练RPN(也就是得到roi的网络)
https://blog.csdn.net/m0_37663944/article/details/103735094

5._proposal_target_layer
https://blog.csdn.net/m0_37663944/article/details/103737373
这个函数主要根据_proposal_layer函数得到的roi与真实框得到iou,进行筛选,打标签(分类0,1,然后得出回归预测的误差值),和上面的_anchor_target_layer有以下不同:
1.它是用来训练最终的分类回归的,不在本篇博客的图中。

参考文献:
https://www.cnblogs.com/wangyong/p/8513563.html
https://blog.csdn.net/qq_41576083/article/details/82966489

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152311.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • request 和require区别_合同翻译时如何区分使用request和require

    request 和require区别_合同翻译时如何区分使用request和require合同中,request和require都是“要求”的意思,不过request更偏重于“请求”,翻译英到中时遇到这两个词问题不大,翻译出它们的意思就可以,但是中译英时就要注意了,这是我今天要强调的重要区别,前者动作发出者通常为人,后者通常为物,下面通过例句说明:1requestAttherequestoftheBuyer,theSUPPLIERundertakestodeposi…

    2025年8月23日
    3
  • 详解JVM常量池、Class常量池、运行时常量池、字符串常量池(心血总结)

    详解JVM常量池、Class常量池、运行时常量池、字符串常量池(心血总结)写在前面:博主是一位普普通通的19届二本大学生,平时最大的爱好就是听听歌,逛逛B站。博主很喜欢的一句话花开堪折直须折,莫待无花空折枝:博主的理解是头一次为人,就应该做自己想做的事,做自己不后悔的事,做自己以后不会留有遗憾的事,做自己觉得有意义的事,不浪费这大好的青春年华。博主写博客目的是记录所学到的知识并方便自己复习,在记录知识的同时获得部分浏览量,得到更多人的认可,满足小小的成就感,同时在写博客的途中结交更多志同道合的朋友,让自己在技术的路上并不孤单。目录:1.常量池与Class常量池2.运.

    2025年10月17日
    4
  • rabbitmq集群部署详解_服务器集群与负载均衡

    rabbitmq集群部署详解_服务器集群与负载均衡如何搭建RabbitMQ集群?动手搭建RabbitMQ镜像队列集群!

    2025年10月20日
    3
  • Padstart_notation pad pro

    Padstart_notation pad pro//将一个ipv4地址转换为10进制数输出//eg:192.168.1.1functiontranslateIP2Dig(ipStr){letipArr=ipStr.split(‘.’)letresArr=[]ipArr.forEach(item=>{letstr=parseInt(item).toString(2)str=str.padStart(8,0)resArr.push(str)})retu

    2025年10月14日
    4
  • EAX、ECX、EDX、EBX等寄存器的作用

    EAX、ECX、EDX、EBX等寄存器的作用EAX ECX EDX EBX 等寄存器的作用 一般寄存器 AX BX CX DXAX 累积暂存器 BX 基底暂存器 CX 计数暂存器 DX 资料暂存器 索引暂存器 SI DISI 来源索引暂存器 DI 目的索引暂存器 堆叠 基底暂存器 SP BPSP 堆叠指标暂存器 BP 基底指标暂存器 EAX ECX EDX EBX 是 ax bx cx dx 的延伸 各为

    2025年6月29日
    3
  • 一个客户的丢包问题

    一个客户的丢包问题

    2021年8月9日
    57

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号