7-线程死锁[通俗易懂]

7-线程死锁[通俗易懂]线程死锁什么是线程死锁?死锁指的是两个或两个以上的线程在执行过程中因为争夺资源而造成的互相等待的现象。在无外力的情况下,这些线程一直会相互等待而无法继续进行工作。如图:在上图中,线程A已经持有了资

大家好,又见面了,我是你们的朋友全栈君。

线程死锁

  • 什么是线程死锁?死锁指的是两个或两个以上的线程在执行过程中因为争夺资源而造成的互相等待的现象。在无外力的情况下,这些线程一直会相互等待而无法继续进行工作。如图:

  • image

  • 在上图中,线程A已经持有了资源2,它同时还想申请资源1,线程B已经持有了资源1,它同时还想申请资源2,所以线程A和线程B就因为相互等待对方已经持有的资源,而进入死锁状态。

  • 为什么产生死锁呢?死锁产生的必备条件:

    • 互斥条件:指线程对已经获得到的资源进行排它使用,如果还有其他线程想用这个资源,则必须等待。
    • 请求并持有条件:指一个线程已经持有了至少一个资源,但又提出了新的资源请求,而新的资源请求已经被其他线程锁占有且为互斥。
    • 不可剥夺条件:指线程获取到的资源在自己使用完之前不能被其他线程所抢占,只有在自己使用完后才能由自己释放。
    • 环路等待条件:指发生死锁的时候必然存在一个线程-资源的环形链,即线程集合{T0,T1,T2,…,Tn}中的T0等待T1占用的资源,T1等待T2占用的一个资源,以此类推,Tn等待T0占用的一个资源。
    package com.heiye.learn1;
    
    import java.util.logging.Logger;
    
    public class DeadLockTest2 {
        //创建资源
        private static Object resourceA = new Object();
        private static Object resourceB = new Object();
    
        public static void main(String[] args) {
            Logger logger = Logger.getLogger(DeadLockTest2.class.toString());
            //创建线程A
            Thread threadA = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceA) {
                        logger.info(Thread.currentThread() + " get ResourceA");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceB");
                        synchronized (resourceB) {
                            logger.info(Thread.currentThread() + "get ResourceB");
                        }
                    }
                }
            });
    
            //创建线程B
            Thread threadB = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceB) {
                        logger.info(Thread.currentThread() + " get ResourceB");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceA");
                        synchronized (resourceA) {
                            logger.info(Thread.currentThread() + "get ResourceA");
                        }
                    }
                }
            });
    
            //启动线程
            threadA.start();
            threadB.start();
        }
    }
    
  • image

  • Thread-2是线程B,Thread-1是线程A,从输出结果可知,线程调度器首先调度了线程B,也就是吧CPU时间片资源分配给了B,线程B通过synchronized(ResourceB)获取到了B资源锁,然后休眠1s是为了保证线程B为了获取资源A之前先让线程A获取资源A,这样线程A获取到了资源A,线程B获取到了资源B,但是线程暗想获取资源B的资源,线B又想获取资源A的资源,这样就互相等待想入了死锁。

  • 那么如何避免线程死锁呢?只需要破坏掉至少一个构造死锁的条件就可以了。造成死锁的原因其实和申请自愿的顺序有着很大的关系,使用资源申请的有序性原则就可以避免死锁,那么什么是资源申请的有序性?我们对线程B的代码进行修改

            //创建线程B
            Thread threadB = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceA) {
                        logger.info(Thread.currentThread() + " get ResourceB");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceA");
                        synchronized (resourceB) {
                            logger.info(Thread.currentThread() + "get ResourceA");
                        }
                    }
                }
            });
    
  • image

  • 在上面的代码中,假如线程A和线程B同时执行了synchronized(resourceA),只有一个线程可以获取到resourceA上的监视器,假如线程A获取到了,那么线程B就会阻塞而不会再去获取资源B,线程A获取到resourceA的监视器后回去申请resourceB资源,这时候线程A是获取到的,线程A获取到resourceB并使用完之后会放弃对资源resourceB的持有,然后再释放resourceA的持有,释放resourceA后线程B才会被从阻塞阶段变为激活状态。所以资源的有序性破坏了资源的请求并持有条件和环路等待条件,因此避免了死锁。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/154418.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • android:ListView排序[通俗易懂]

    android:ListView排序[通俗易懂]
    Android:ListView排序

    ListView通过适配器得到内容数据,可以对数据list先排序再提供给ListView:
    privateList>getData(){
    List>list=newArrayList>();
    //addData…
    //对list进行排序

    2022年9月27日
    2
  • springboot实战第四章-服务端推送技术

    springboot实战第四章-服务端推送技术

    2021年5月15日
    124
  • PS2有线手柄的SPI协议

    PS2有线手柄的SPI协议1.SPI模式与PS2采用的是SPIMODE3模式。并且使用低位在前方式收发数据。2.请求PS2按键数据想要向PS2请示数据要发送一个请求命令。请求命令如下所示:cmd_require[9]={0x01,0x42,0x00,0x00,0x00,0x00,0x00,0x00,0x00};//数据按先低位后高位发送3.接收PS按键数据在发送请求命令的…

    2022年5月6日
    51
  • ntp 校时 linux 带源码

    ntp 校时 linux 带源码最近做个项目,想通过公司上的NTP服务器给板子校时,但是板子里没有ntpdate这个命令,下面是2个解决方法,1,找到ntpdate源代码,重新编译之后,手动运行,这个方法我上网上查了,比较复杂,据说NTP还与SSL有关,编译的时候必须把SSL也包含进去,于是就迟迟没有动工。2,突然有一天看到rtthread里也提供一个ntp的客户端,比较简单,就一个文件,也没几行,于是想着把这个.c文件移植到linux下,但我仔细研究了一下,发现这个文件的原始作者就是在linux下设计的。原始文件更简单.

    2022年6月18日
    24
  • Latex中插图总结(一)

    Latex中插图总结(一)写在前面的话CSDN中的数据库保存是不是有问题,我之前写了很多的,存在草稿箱里的最后竟然没有在了。真是郁闷死个人。亏我写了这么多,以后写完要保存了。泪目。Latex的插图在Latex中使用插图一般有两种方式,一种是插入事先准备好的图片,另一种是使用Latex代码直接在文档中画图。我们一般常见的使用都是第一种,准备好图片,然后直接插入在我们文档当中。只有一些特殊情况需要用大量代码作图。插图功能不是有L

    2022年6月10日
    44
  • React图片懒加载

    React图片懒加载话不多说了,创建一个LazyLoad.js的React组件,然后将下面的代码复制过去:importReactfrom’react’//import’./lazyload.css’//thresholdconstthreshold=[0.01]classLazyLoadextendsReact.Component{construc…

    2022年4月6日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号