7-线程死锁[通俗易懂]

7-线程死锁[通俗易懂]线程死锁什么是线程死锁?死锁指的是两个或两个以上的线程在执行过程中因为争夺资源而造成的互相等待的现象。在无外力的情况下,这些线程一直会相互等待而无法继续进行工作。如图:在上图中,线程A已经持有了资

大家好,又见面了,我是你们的朋友全栈君。

线程死锁

  • 什么是线程死锁?死锁指的是两个或两个以上的线程在执行过程中因为争夺资源而造成的互相等待的现象。在无外力的情况下,这些线程一直会相互等待而无法继续进行工作。如图:

  • image

  • 在上图中,线程A已经持有了资源2,它同时还想申请资源1,线程B已经持有了资源1,它同时还想申请资源2,所以线程A和线程B就因为相互等待对方已经持有的资源,而进入死锁状态。

  • 为什么产生死锁呢?死锁产生的必备条件:

    • 互斥条件:指线程对已经获得到的资源进行排它使用,如果还有其他线程想用这个资源,则必须等待。
    • 请求并持有条件:指一个线程已经持有了至少一个资源,但又提出了新的资源请求,而新的资源请求已经被其他线程锁占有且为互斥。
    • 不可剥夺条件:指线程获取到的资源在自己使用完之前不能被其他线程所抢占,只有在自己使用完后才能由自己释放。
    • 环路等待条件:指发生死锁的时候必然存在一个线程-资源的环形链,即线程集合{T0,T1,T2,…,Tn}中的T0等待T1占用的资源,T1等待T2占用的一个资源,以此类推,Tn等待T0占用的一个资源。
    package com.heiye.learn1;
    
    import java.util.logging.Logger;
    
    public class DeadLockTest2 {
        //创建资源
        private static Object resourceA = new Object();
        private static Object resourceB = new Object();
    
        public static void main(String[] args) {
            Logger logger = Logger.getLogger(DeadLockTest2.class.toString());
            //创建线程A
            Thread threadA = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceA) {
                        logger.info(Thread.currentThread() + " get ResourceA");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceB");
                        synchronized (resourceB) {
                            logger.info(Thread.currentThread() + "get ResourceB");
                        }
                    }
                }
            });
    
            //创建线程B
            Thread threadB = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceB) {
                        logger.info(Thread.currentThread() + " get ResourceB");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceA");
                        synchronized (resourceA) {
                            logger.info(Thread.currentThread() + "get ResourceA");
                        }
                    }
                }
            });
    
            //启动线程
            threadA.start();
            threadB.start();
        }
    }
    
  • image

  • Thread-2是线程B,Thread-1是线程A,从输出结果可知,线程调度器首先调度了线程B,也就是吧CPU时间片资源分配给了B,线程B通过synchronized(ResourceB)获取到了B资源锁,然后休眠1s是为了保证线程B为了获取资源A之前先让线程A获取资源A,这样线程A获取到了资源A,线程B获取到了资源B,但是线程暗想获取资源B的资源,线B又想获取资源A的资源,这样就互相等待想入了死锁。

  • 那么如何避免线程死锁呢?只需要破坏掉至少一个构造死锁的条件就可以了。造成死锁的原因其实和申请自愿的顺序有着很大的关系,使用资源申请的有序性原则就可以避免死锁,那么什么是资源申请的有序性?我们对线程B的代码进行修改

            //创建线程B
            Thread threadB = new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (resourceA) {
                        logger.info(Thread.currentThread() + " get ResourceB");
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
    
                        logger.info(Thread.currentThread() + " waiting get ResourceA");
                        synchronized (resourceB) {
                            logger.info(Thread.currentThread() + "get ResourceA");
                        }
                    }
                }
            });
    
  • image

  • 在上面的代码中,假如线程A和线程B同时执行了synchronized(resourceA),只有一个线程可以获取到resourceA上的监视器,假如线程A获取到了,那么线程B就会阻塞而不会再去获取资源B,线程A获取到resourceA的监视器后回去申请resourceB资源,这时候线程A是获取到的,线程A获取到resourceB并使用完之后会放弃对资源resourceB的持有,然后再释放resourceA的持有,释放resourceA后线程B才会被从阻塞阶段变为激活状态。所以资源的有序性破坏了资源的请求并持有条件和环路等待条件,因此避免了死锁。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/154418.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java中session的使用[通俗易懂]

    java中session的使用[通俗易懂]1、创建session:2、jsp读取session3、java后台读取session的值

    2022年7月4日
    29
  • 100999凑整到万位进一_速算方法 速算口诀[通俗易懂]

    100999凑整到万位进一_速算方法 速算口诀[通俗易懂]“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,下面是出国留学网小编为大家整理的“速算方法”。本内容为大家提供参考。希望对您有所帮助。请关注出国留学网!!!速算方法一、▲“九几乘九几,左减右补数,后面空两格,写上补乘补。”9300-5005×7=880035=883500看作两个空格二、▲任意数乘25,等于此数…

    2022年6月15日
    70
  • 如何获取沪深股市历史数据并入库

    如何获取沪深股市历史数据并入库采用Tushare大数据社区的数据接口,免费撸数据

    2022年6月24日
    28
  • PL/SQL入门教程

    PL/SQL入门教程  1.1PL/SQL简介  PL/SQL是ORACLE的过程化语言,包括一整套的数据类型、条件结构、循环结构和异常处理结构,PL/SQL可以执行SQL语句,SQL语句中也可以使用PL/SQL函数。  1.2创建PL/SQL程序块  DECLARE  …  BEGIN  …  EXCEPTION  END;  1.3PL/SQL数据类型    例子:  DECLARE  ORDER_NON

    2022年10月10日
    0
  • 十进制小数转换为二进制[通俗易懂]

    十进制小数转换为二进制[通俗易懂]十进制小数转换为二进制十进制小数转换方法十进制小数→→→→→二进制小数方法:“乘2取整”对十进制小数乘2得到的整数部分和小数部分,整数部分既是相应的二进制数码,再用2乘小数部分(之前乘后得到新的小数部分),又得到整数和小数部分.如此不断重复,直到小数部分为0或达到精度要求为止.第一次所得到为最高位,最后一次得到为最低位如:0.25的二进制0.25*2=0.5取整是00.5*…

    2022年9月25日
    1
  • linux history原理,linux history 命令详解

    linux history原理,linux history 命令详解显示命令执行时间linuxshell具有history功能,即会记录已经执行过的命令,但是默认是不显示命令的执行时间,命令的执行时间,history已经记录,只是没有显示。现在我们看看如何将执行时间显示出来。很简单:在/home/$USER/.bashrc中添加HISTTIMEFORMAT环境变量即可。具体如下:添加完成后,执行source.bashrc让其生效。这个时候,你再执行h…

    2022年7月13日
    16

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号