背包问题九讲笔记_多重背包

背包问题九讲笔记_多重背包摘自TianyiCui童鞋的《背包问题九讲》,稍作修改,方便理解。本文包含的内容:问题描述 基本思路(和完全背包类似) 转换为01背包问题求解(直接利用01背包)———————————————1、问题描述已知:有一个容量为V的背包和N件物品,第i件物品最多有Num[i]件

大家好,又见面了,我是你们的朋友全栈君。

摘自Tianyi Cui童鞋的《背包问题九讲》,稍作修改,方便理解。

本文包含的内容:

<1> 问题描述

<2> 基本思路(和完全背包类似)

<3> 转换为01背包问题求解(直接利用01背包)

———————————————

1、问题描述

已知:有一个容量为V的背包和N件物品,第i件物品最多有Num[i]件,每件物品的重量是weight[i],收益是cost[i]。

问题:在不超过背包容量的情况下,最多能获得多少价值或收益

举例:物品个数N = 3,背包容量为V = 8,则背包可以装下的最大价值为64.

背包问题九讲笔记_多重背包

———————————————-

2、基本思路(直接扩展01背包的方程)

由于本问题和完全背包很类似,这里直接给出方程。

状态转移方程:

f[i][v]:表示前i件物品放入重量为v的背包获得的最大收益
f[i][v] = max(f[i][v],f[i - 1][V - k * Weight[i]] + k * Value[i]);
其中0 <= k <= min(Num[i],V/Weight[i]);//这里和完全背包不同。
边界条件
f[i][0] = 0;
f[v][0] = 0;

代码:

#include <iostream>
using namespace std;
const int N = 3;//物品个数
const int V = 8;//背包容量
int Weight[N + 1] = {0,1,2,2};
int Value[N + 1] = {0,6,10,20};
int Num[N + 1] = {0,10,5,2};
int f[N + 1][V + 1] = {0};
/*
f[i][v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[i][v] = max(f[i - 1][v],f[i - 1][v - k * Weight[i]] + K * Value[i]);其中1 <= k <= min(Num[i],V/Weight[i])
//初始化
f[i][0] = 0;
f[0][v] = 0;
*/
int MultiKnapsack()
{
	int nCount = 0;
	//初始化
	for (int i = 0;i <= N;i++)
	{
		f[i][0] = 0;
	}
	for (int v = 0;v <= V;v++)
	{
		f[0][v] = 0;
	}
	//递推
	for (int i = 1;i <= N;i++)
	{
		for (int v = Weight[i];v <= V;v++)
		{
			f[i][v] = 0;
			nCount = min(Num[i],v/Weight[i]);//是当前背包容量v,而不是背包的总容量
			for (int k = 0;k <= nCount;k++)
			{
				f[i][v] = max(f[i][v],f[i - 1][v - k * Weight[i]] + k * Value[i]);
			}
		}
	}
	return f[N][V];
}
int main()
{
	cout<<MultiKnapsack()<<endl;
	system("pause");
	return 1;
}

复杂度分析:

程序需要求解N*V个状态,每一个状态需要的时间为O(v/Weight[i]),总的复杂度为O(NV*Σ(V/Weight[i]))。

3、转换为01背包问题求解(直接利用01背包)

思路 1、直接对每一件物品进行拆分成min(Num[i],V/Weight[i])件,之后在拆分后的集合上进行01背包的求解。

时间复杂度:和基本思路一样,没有降低。

思路 2、采用二进制拆分的思想。对每i件物品,拆分的策略为:新拆分的物品的重量等于1件,2件,4件,..,(2^(k – 1)),Num[i] – (2^(k – 1))件,其中k 是满足Num[i] – 2^k + 1 > 0 的最大整数。

注意,

(1)最后一个物品的件数的求法和前面不同,其直接等于 该物品的最大件数 – 前面已经分配之和。

(2)分成的这几件物品的系数和为Num[i],表明第i种物品取的件数不能多于Num[i]

举例:某物品为13件,则其可以分成四件物品,其系数为1,2,4,6.这里k = 3。

当然,这里使用二进制的前提还是使用二进制拆分能保证对于0,,,Num[i]间的每一个整数,均可以用若干个系数的和表示。

具体使用时,有一个小优化,即:

我们不对所有的物品进行拆分,因此物品一旦拆分,其物品个数肯定增加,那么复杂度肯定上去。

此时,我们可以选择性地对物品进行拆分:

(1)如果第i个物品的重量Weight[i] * 物品的个数Num[i] >= 背包总重量V,可以不用拆分。

(2)如果第i个物品的重量Weight[i] * 物品的个数Num[i] < 背包总重量V,可以不用拆分。

其实,拆不拆分,就看该物品能不能满足完全背包的条件。即,看该物品能不能无限量供应。

解释:为啥满足Weight[i] * 物品的个数Num[i] >= 背包总重量V的物品可以不用拆分?

此时,满足该条件时,此物品原则上是无限供应,直到背包放不下为止。

最终,对于不需要拆分的物品,可以看出完全背包的情况,调用处理完全背包物品的函数。对于需要拆分的物品,可以看出01背包的情况,调用处理01背包物品的函数。

这样,由于不对满足完全背包的物品进行拆分,此时物品个数就没有对所有物品拆分时的物品个数多,即程序中外层循环降低,复杂度也就下去了。

伪代码:

背包问题九讲笔记_多重背包

这里:C表示该物品的重量。M表示该物品的个数。V表示背包的最大容量。W表示该物品的收益。

代码:

#include <iostream>
using namespace std;

const int N = 3;//物品个数
const int V = 8;//背包容量
int Weight[N + 1] = {0,1,2,2};
int Value[N + 1] = {0,6,10,20};
int Num[N + 1] = {0,10,5,2};

int f[V + 1] = {0};
/*
f[v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[v] = max(f[v],f[v - Weight[i]] + Value[i]);
v的为逆序
*/
void ZeroOnePack(int nWeight,int nValue)
{
	for (int v = V;v >= nWeight;v--)
	{
		f[v] = max(f[v],f[v - nWeight] + nValue);
	}
}

/*
f[v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[v] = max(f[v],f[v - Weight[i]] + Value[i]);
v的为增序
*/
void CompletePack(int nWeight,int nValue)
{
	for (int v = nWeight;v <= V;v++)
	{
		f[v] = max(f[v],f[v - nWeight] + nValue);
	}
}

int MultiKnapsack()
{
	int k = 1;
	int nCount = 0;
	for (int i = 1;i <= N;i++)
	{
		if (Weight[i] * Num[i] >= V)
		{
			//完全背包:该类物品原则上是无限供应,
			//此时满足条件Weight[i] * Num[i] >= V时,
			//表示无限量供应,直到背包放不下为止.
			CompletePack(Weight[i],Value[i]);
		}
		else
		{
			k = 1;
			nCount = Num[i];
			while(k <= nCount)
			{
				ZeroOnePack(k * Weight[i],k * Value[i]);
				nCount -= k;
				k *= 2;
			}
			ZeroOnePack(nCount * Weight[i],nCount * Value[i]);
		}
	}
	return f[V];
}

int main()
{
	cout<<MultiKnapsack()<<endl;
	system("pause");
	return 1;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/157887.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • idea2022激活教程,永久激活!(附激活码)[最新免费获取]2022.02.25

    (idea2022激活教程,永久激活!(附激活码))2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html…

    2022年4月1日
    1.0K
  • 云服务器高io是什么_云主机购买

    云服务器高io是什么_云主机购买1:数据读取速度ucloud云主机最低224.8MB/S,最高508.8MB/S,平均410.7MB/S阿里云主机最低17.4MB/S,最高189.6MB/S,平均170.6MB/S万根云主机最低

    2022年8月3日
    4
  • 基于LM324的音调放大电路

    基于LM324的音调放大电路这次分享我大二的一次课程设计,还有本人的一些心得:本次设计采用LM324、LM386、4欧姆的喇叭各1个,场效应管、电阻、电容等器件,电路主要由三部分电路构成,分别是由LM324N构成的运算放大电路和音调控制电路,以及由LM386构成的功率放大电路。当接收到输入语音信号时,将语音信号转换为电信号,经过运算放大电路将电信号进行放大,然后可通过音调控制电路进行调节,最后通过功率放大电路将进行…

    2022年5月24日
    59
  • 对接第三方接口,其中图片是经过Base64加密的「建议收藏」

    对接第三方接口,其中图片是经过Base64加密的「建议收藏」1.简介httppost请求第三方接口,返回图片的信息是经过Base64加密的,如下:<details><summary>点击时的区域标题:点击查看详细内容</summary><p>-测试测试测试</p><pre><code>title,value,callBack可以缺省</code></pre></details><?xmlversion

    2022年6月18日
    19
  • linux中的awk命令详解

    linux中的awk命令详解1、AWK简介AWK是一种处理文本文件的语言,是一个强大的文本分析工具。2、AWK语法awk[选项参数]’script’var=valuefile(s)或awk[选项参数]-fscriptfilevar=valuefile(s)选项参数的说明:-Ffsor–field-separatorfs指定输入文件折分隔符,fs是一个字符串

    2022年7月11日
    15
  • QT实现简单的上位机软件

    QT实现简单的上位机软件QT实现简单的上位机软件

    2022年5月10日
    105

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号