pytorch损失函数之nn.CrossEntropyLoss()、nn.NLLLoss()「建议收藏」

pytorch损失函数之nn.CrossEntropyLoss()、nn.NLLLoss()「建议收藏」这个损失函数用于多分类问题虽然说的交叉熵,但是和我们理解的交叉熵不一样

大家好,又见面了,我是你们的朋友全栈君。

nn.CrossEntropyLoss()这个损失函数用于多分类问题虽然说的是交叉熵,但是和我理解的交叉熵不一样。nn.CrossEntropyLoss()是nn.logSoftmax()和nn.NLLLoss()的整合,可以直接使用它来替换网络中的这两个操作。下面我们来看一下计算过程。
首先输入是size是(minibatch,C)。这里的C是类别数。损失函数的计算如下:

l o s s ( x , c l a s s ) = − l o g ( e x p ( x [ c l a s s ] ) ∑ j e x p ( x [ j ] ) ) = − x [ c l a s s ] + l o g ( ∑ j e x p ( x [ j ] ) ) loss(x,class)=-log(\frac{exp(x[class])}{\sum_jexp(x[j])})=-x[class]+log(\sum_jexp(x[j])) loss(x,class)=log(jexp(x[j])exp(x[class]))=x[class]+log(jexp(x[j]))

损失函数中也有权重weight参数设置,若设置权重,则公式为: l o s s ( x , c l a s s ) = w e i g h t [ c l a s s ] ( − x [ c l a s s ] + l o g ( ∑ j e x p ( x [ j ] ) ) ) loss(x,class)=weight[class](-x[class]+log(\sum_jexp(x[j]))) loss(x,class)=weight[class](x[class]+log(jexp(x[j])))
其他参数不具体说,和nn.BCELoss()设置差不多,默认情况下,对minibatch的loss求均值。

注意这里的标签值class,并不参与直接计算,而是作为一个索引,索引对象为实际类别

举个栗子,我们一共有三种类别,批量大小为1(为了好计算),那么输入size为(1,3),具体值为torch.Tensor([[-0.7715, -0.6205,-0.2562]])。标签值为target = torch.tensor([0]),这里标签值为0,表示属于第0类。loss计算如下:
import torch
import torch.nn as nn
import math

entroy=nn.CrossEntropyLoss()
input=torch.Tensor([[-0.7715, -0.6205,-0.2562]])
target = torch.tensor([0])
output = entroy(input, target)
print(output)
#根据公式计算
输出:

tensor(1.3447)

动手自己算:

− x [ 0 ] + l o g ( e x p ( x [ 0 ] ) + e x p ( x [ 1 ] ) + e x p ( x [ 2 ] ) ) -x[0]+log(exp(x[0])+exp(x[1])+exp(x[2])) x[0]+log(exp(x[0])+exp(x[1])+exp(x[2])) = 0.7715 + l o g ( e x p ( − 0.7715 ) + e x p ( − 0.6205 ) + e x p ( − 0.2562 ) = 1.3447266007601868 =0.7715+log(exp(-0.7715)+exp(-0.6205)+exp(-0.2562)=1.3447266007601868 =0.7715+log(exp(0.7715)+exp(0.6205)+exp(0.2562)=1.3447266007601868

我们在看看是否等价nn.logSoftmax()和nn.NLLLoss()的整合:
m = nn.LogSoftmax()
loss = nn.NLLLoss()
input=m(input)
output = loss(input, target)
print('output:',output)
输出:

input: tensor([[-1.3447, -1.1937, -0.8294]])
output: tensor(1.3447)

可以看出nn.LogSoftmax()的对输入的操作就是: l o g ( e x p ( x ) ∑ i e x p ( x [ i ] ) ) log(\frac{exp(x)}{\sum_iexp(x[i])}) log(iexp(x[i])exp(x))x是输入向量。
而nn.NLLLoss()的操作是: l o s s n = − w n x n , y n loss_n=-w_nx_{n,y_n} lossn=wnxn,yn这里没有设置权重,也就是权重默认为1,x_{n,y_n}表示目标类所对应输入x中值,则loss就为 l o s s = − 1 ∗ x [ 0 ] = 1.3447 loss=-1*x[0]=1.3447 loss=1x[0]=1.3447
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/158215.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 视频直播技术详解之采集[通俗易懂]

    视频直播技术详解之采集[通俗易懂]声明:本文为CSDN原创投稿文章,未经许可,禁止任何形式的转载。作者:七牛云责编:钱曙光,关注架构和算法领域,寻求报道或者投稿请发邮件qianshg@csdn.net,另有「CSDN高级架构师群」,内有诸多知名互联网公司的大牛架构师,欢迎架构师加微信qshuguang2008申请入群,备注姓名+公司+职位。随着互联网用户消费内容和交互方式的升级,支撑这些内容和交互方式的基…

    2022年7月24日
    20
  • 单片机c语言毕业设计,单片机毕业设计的总结.docx

    单片机c语言毕业设计,单片机毕业设计的总结.docx单片机毕业设计的总结单片机毕业设计总结篇一:单片机课程设计总结报告参考模板  湖州师范学院求真学院  课程设计总结报告  课程名称单片机应用系统设计  设计题目基于STC89C51的数字电子钟设计  专业电子科学与技术  班级  姓名张静  学号12  指导教师李祖欣吴小红  报告成绩  求真学院信息与工程系  二〇一一年六月一日  《单片机应用…

    2022年10月3日
    0
  • removeClass()

    removeClass()

    2021年9月21日
    41
  • mac安装idea以及激活方法2021【2021最新】

    (mac安装idea以及激活方法2021)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~3YVY…

    2022年3月30日
    2.0K
  • Linux平台基于v4l2开发免驱摄像头->输出为Opencv Mat

    V4L2简介作者:onesixthree链接:https://www.jianshu.com/p/fd5730e939e7来源:简书VideoforLinuxtwo(Video4Linux2)简称V4L2,是V4L的改进版。V4L2是linux操作系统下用于采集图片、视频和音频数据的API接口,配合适当的视频采集设备和相应的驱动程序,可以实现图片、视频、音频等的采集。可以对uvc免驱…

    2022年4月15日
    43
  • 图论】(单源最短路径)Bellman-Ford算法

    图论】(单源最短路径)Bellman-Ford算法

    2021年9月28日
    36

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号