谈谈自己对正则化的一些理解~

谈谈自己对正则化的一些理解~上学的时候,就一直很好奇,模式识别理论中,常提到的正则化到底

大家好,又见面了,我是你们的朋友全栈君。

上学的时候,就一直很好奇,模式识别理论中,常提到的正则化到底是干什么的?渐渐地,听到的多了,看到的多了,再加上平时做东西都会或多或少的接触,有了一些新的理解。

1. 正则化的目的:防止过拟合!

2. 正则化的本质:约束(限制)要优化的参数。

关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会造成模型比较复杂(想想看,本来一次函数能够拟合的数据,现在由于数据带有噪声,导致要用五次函数来拟合,多复杂!),另一方面,模型的泛化性能太差了(本来是一次函数生成的数据,结果由于噪声的干扰,得到的模型是五次的),遇到了新的数据让你测试,你所得到的过拟合的模型,正确率是很差的。

关于第2点,本来解空间是全部区域,但通过正则化添加了一些约束,使得解空间变小了,甚至在个别正则化方式下,解变得稀疏了。这一点不得不提到一个图,相信我们都经常看到这个图,但貌似还没有一个特别清晰的解释,这里我尝试解释一下,图如下:

谈谈自己对正则化的一些理解~

这里的w1,w2都是模型的参数,要优化的目标参数,那个红色边框包含的区域,其实就是解空间,正如上面所说,这个时候,解空间“缩小了”,你只能在这个缩小了的空间中,寻找使得目标函数最小的w1,w2。左边图的解空间是圆的,是由于采用了L2范数正则化项的缘故,右边的是个四边形,是由于采用了L1范数作为正则化项的缘故,大家可以在纸上画画,L2构成的区域一定是个圆,L1构成的区域一定是个四边形。

再看看那蓝色的圆圈,再次提醒大家,这个坐标轴和特征(数据)没关系,它完全是参数的坐标系,每一个圆圈上,可以取无数个w1,w2,这些w1,w2有个共同的特点,用它们计算的目标函数值是相等的!那个蓝色的圆心,就是实际最优参数,但是由于我们对解空间做了限制,所以最优解只能在“缩小的”解空间中产生。

蓝色的圈圈一圈又一圈,代表着参数w1,w2在不停的变化,并且是在解空间中进行变化(这点注意,图上面没有画出来,估计画出来就不好看了),直到脱离了解空间,也就得到了图上面的那个w*,这便是目标函数的最优参数。

对比一下左右两幅图的w*,我们明显可以发现,右图的w*的w1分量是0,有没有感受到一丝丝凉意?稀疏解诞生了!是的,这就是我们想要的稀疏解,我们想要的简单模型。

还记得模式识别中的剃刀原理不?倾向于简单的模型来处理问题,避免采用复杂的。

这里必须要强调的是,这两幅图只是一个例子而已,没有说采用L1范数就一定能够得到稀疏解,完全有可能蓝色的圈圈和四边形(右图)的一边相交,得到的就不是稀疏解了,这要看蓝色圈圈的圆心在哪里。

此外,正则化其实和“带约束的目标函数”是等价的,二者可以互相转换。关于这一点,我试着给出公式进行解释:

针对上图(左图),可以建立数学模型如下:

谈谈自己对正则化的一些理解~

通过熟悉的拉格朗日乘子法(注意这个方法的名字),可以变为如下形式:

谈谈自己对正则化的一些理解~

看到没,这两个等价公式说明了,正则化的本质就是,给优化参数一定约束,所以,正则化与加限制约束,只是变换了一个样子而已。

此外,我们注意,正则化因子,也就是里面的那个lamda,如果它变大了,说明目标函数的作用变小了,正则化项的作用变大了,对参数的限制能力加强了,这会使得参数的变化不那么剧烈(仅对如上数学模型),直接的好处就是避免模型过拟合。反之,自己想想看吧。。。

个人感觉,“正则化”这几个字叫的实在是太抽象了,会吓唬到人,其实真没啥。如果改成“限制化”或者是“约束化”,岂不是更好?

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/159224.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 使用VS开发C语言

    在嵌入开发板上做了一段时间的C语言开发后,今天突然心血来潮,想起大学时期在TurboC和TC3下写代码的情形。大一时宿舍里有台386(在当时是算比较先进的了),大一大二基本上都在玩DOS和WIN31、

    2021年12月23日
    35
  • netstat命令详解Linux,Linux netstat命令详解

    netstat命令详解Linux,Linux netstat命令详解常见参数-a(all)显示所有选项,默认不显示LISTEN相关-t(tcp)仅显示tcp相关选项-u(udp)仅显示udp相关选项-n拒绝显示别名,能显示数字的全部转化成数字。-l仅列出有在Listen(监听)的服務状态-p显示建立相关链接的程序名-r显示路由信息,路由表-e显示扩展信息,例如uid等-s按各个协议进行统计-c每隔一个固定时间,执行该netstat命令。提…

    2022年5月7日
    49
  • 快手用户群体分析_抖音、快手竞品分析报告

    快手用户群体分析_抖音、快手竞品分析报告一、产品初步体验介绍体验环境:RedmiNote5A体验时间:2018.7体验人:Cinnamon抖音快手抖音的logo以暗黑色为底,一个大大的亮白立体音符占据中央,强调了抖音重点在于结合音乐,给人的第一感觉就是炫酷,符合年轻人的审美。快手的logo以黄色为主,是一个立体的摄像机,体现了快手重点在于记录。应用首页抖音的底部button遵循传统的排版:刷新-附近/推荐(首页)、关注、拍摄、消息和我…

    2022年5月10日
    87
  • shell if 小数 比较

    shell if 小数 比较shell的[]对于数值的判断都是基于整数的,如果碰到小数就无能为力了。google了一把发现用awk的牛人多,不过发现一个兄弟的更加好。if[`expr$a\>$b`-eq0];thenecho$bisbiggerelseecho$aisbiggerfi通过ex…

    2022年7月27日
    21
  • [linux] linux 复制文件夹/文件到指定位置 cp -r和cp -r -d[通俗易懂]

    1.cp-r移动子目录和根目录到指定文件夹将test文件夹移动到video内!cp-r./test./video操作后存在./video/test2.cp-r-d移动所有子目录到指定文件夹将所有子目录移动到指定位置如structuring内存在a,b,c,三个文件夹./structuring/a./structuring/b./structuring/c!cp-r-d./structuring/*./则操作后存在./a./b./c…

    2022年4月13日
    92
  • 别绝望,人生还很长!

    别绝望,人生还很长!

    2021年5月23日
    90

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号