pandas中关于DataFrame行,列显示不完全(省略)的解决办法[通俗易懂]

pandas中关于DataFrame行,列显示不完全(省略)的解决办法[通俗易懂]有时候DataFrame中的行列数量太多,print打印出来会显示不完全。就像下图这样:列显示不全:行显示不全:添加如下代码,即可解决。#显示所有列pd.set_option(‘display.max_columns’,None)#显示所有行pd.set_option(‘display.max_rows’,None)#设置value的显示长度为100,默…

大家好,又见面了,我是你们的朋友全栈君。

有时候DataFrame中的行列数量太多,print打印出来会显示不完全。就像下图这样:

列显示不全:

这里写图片描述

行显示不全:

这里写图片描述

添加如下代码,即可解决。

#显示所有列
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#设置value的显示长度为100,默认为50
pd.set_option('max_colwidth',100)

根据自己的需要更改相应的设置即可。

ps:set_option()的所有属性:

Available options:

- display.[chop_threshold, colheader_justify, column_space, date_dayfirst,
  date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]
- display.latex.[escape, longtable, repr]
- display.[line_width, max_categories, max_columns, max_colwidth,
  max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage,
  mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
  show_dimensions]
- display.unicode.[ambiguous_as_wide, east_asian_width]
- display.[width]
- io.excel.xls.[writer]
- io.excel.xlsm.[writer]
- io.excel.xlsx.[writer]
- io.hdf.[default_format, dropna_table]
- mode.[chained_assignment, sim_interactive, use_inf_as_null]

Parameters
----------
pat : str
    Regexp which should match a single option.
    Note: partial matches are supported for convenience, but unless you use the
    full option name (e.g. x.y.z.option_name), your code may break in future
    versions if new options with similar names are introduced.
value :
    new value of option.

Returns
-------
None

Raises
------
OptionError if no such option exists

Notes
-----
The available options with its descriptions:

display.chop_threshold : float or None
    if set to a float value, all float values smaller then the given threshold
    will be displayed as exactly 0 by repr and friends.
    [default: None] [currently: None]

display.colheader_justify : 'left'/'right'
    Controls the justification of column headers. used by DataFrameFormatter.
    [default: right] [currently: right]

display.column_space No description available.
    [default: 12] [currently: 12]

display.date_dayfirst : boolean
    When True, prints and parses dates with the day first, eg 20/01/2005
    [default: False] [currently: False]

display.date_yearfirst : boolean
    When True, prints and parses dates with the year first, eg 2005/01/20
    [default: False] [currently: False]

display.encoding : str/unicode
    Defaults to the detected encoding of the console.
    Specifies the encoding to be used for strings returned by to_string,
    these are generally strings meant to be displayed on the console.
    [default: UTF-8] [currently: UTF-8]

display.expand_frame_repr : boolean
    Whether to print out the full DataFrame repr for wide DataFrames across
    multiple lines, `max_columns` is still respected, but the output will
    wrap-around across multiple "pages" if its width exceeds `display.width`.
    [default: True] [currently: True]

display.float_format : callable
    The callable should accept a floating point number and return
    a string with the desired format of the number. This is used
    in some places like SeriesFormatter.
    See formats.format.EngFormatter for an example.
    [default: None] [currently: None]

display.height : int
    Deprecated.
    [default: 60] [currently: 60]
    (Deprecated, use `display.max_rows` instead.)

display.large_repr : 'truncate'/'info'
    For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
    show a truncated table (the default from 0.13), or switch to the view from
    df.info() (the behaviour in earlier versions of pandas).
    [default: truncate] [currently: truncate]

display.latex.escape : bool
    This specifies if the to_latex method of a Dataframe uses escapes special
    characters.
    method. Valid values: False,True
    [default: True] [currently: True]

display.latex.longtable :bool
    This specifies if the to_latex method of a Dataframe uses the longtable
    format.
    method. Valid values: False,True
    [default: False] [currently: False]

display.latex.repr : boolean
    Whether to produce a latex DataFrame representation for jupyter
    environments that support it.
    (default: False)
    [default: False] [currently: False]

display.line_width : int
    Deprecated.
    [default: 80] [currently: 80]
    (Deprecated, use `display.width` instead.)

display.max_categories : int
    This sets the maximum number of categories pandas should output when
    printing out a `Categorical` or a Series of dtype "category".
    [default: 8] [currently: 8]

display.max_columns : int
    If max_cols is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the width of the terminal and print a truncated object which fits
    the screen width. The IPython notebook, IPython qtconsole, or IDLE
    do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 20] [currently: 20]

display.max_colwidth : int
    The maximum width in characters of a column in the repr of
    a pandas data structure. When the column overflows, a "..."
    placeholder is embedded in the output.
    [default: 50] [currently: 200]

display.max_info_columns : int
    max_info_columns is used in DataFrame.info method to decide if
    per column information will be printed.
    [default: 100] [currently: 100]

display.max_info_rows : int or None
    df.info() will usually show null-counts for each column.
    For large frames this can be quite slow. max_info_rows and max_info_cols
    limit this null check only to frames with smaller dimensions than
    specified.
    [default: 1690785] [currently: 1690785]

display.max_rows : int
    If max_rows is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the height of the terminal and print a truncated object which fits
    the screen height. The IPython notebook, IPython qtconsole, or
    IDLE do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 60] [currently: 60]

display.max_seq_items : int or None
    when pretty-printing a long sequence, no more then `max_seq_items`
    will be printed. If items are omitted, they will be denoted by the
    addition of "..." to the resulting string.

    If set to None, the number of items to be printed is unlimited.
    [default: 100] [currently: 100]

display.memory_usage : bool, string or None
    This specifies if the memory usage of a DataFrame should be displayed when
    df.info() is called. Valid values True,False,'deep'
    [default: True] [currently: True]

display.mpl_style : bool
    Setting this to 'default' will modify the rcParams used by matplotlib
    to give plots a more pleasing visual style by default.
    Setting this to None/False restores the values to their initial value.
    [default: None] [currently: None]

display.multi_sparse : boolean
    "sparsify" MultiIndex display (don't display repeated
    elements in outer levels within groups)
    [default: True] [currently: True]

display.notebook_repr_html : boolean
    When True, IPython notebook will use html representation for
    pandas objects (if it is available).
    [default: True] [currently: True]

display.pprint_nest_depth : int
    Controls the number of nested levels to process when pretty-printing
    [default: 3] [currently: 3]

display.precision : int
    Floating point output precision (number of significant digits). This is
    only a suggestion
    [default: 6] [currently: 6]

display.show_dimensions : boolean or 'truncate'
    Whether to print out dimensions at the end of DataFrame repr.
    If 'truncate' is specified, only print out the dimensions if the
    frame is truncated (e.g. not display all rows and/or columns)
    [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]

display.unicode.east_asian_width : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]

display.width : int
    Width of the display in characters. In case python/IPython is running in
    a terminal this can be set to None and pandas will correctly auto-detect
    the width.
    Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
    terminal and hence it is not possible to correctly detect the width.
    [default: 80] [currently: 80]

io.excel.xls.writer : string
    The default Excel writer engine for 'xls' files. Available options:
    'xlwt' (the default).
    [default: xlwt] [currently: xlwt]

io.excel.xlsm.writer : string
    The default Excel writer engine for 'xlsm' files. Available options:
    'openpyxl' (the default).
    [default: openpyxl] [currently: openpyxl]

io.excel.xlsx.writer : string
    The default Excel writer engine for 'xlsx' files. Available options:
    'xlsxwriter' (the default), 'openpyxl'.
    [default: xlsxwriter] [currently: xlsxwriter]

io.hdf.default_format : format
    default format writing format, if None, then
    put will default to 'fixed' and append will default to 'table'
    [default: None] [currently: None]

io.hdf.dropna_table : boolean
    drop ALL nan rows when appending to a table
    [default: False] [currently: False]

mode.chained_assignment : string
    Raise an exception, warn, or no action if trying to use chained assignment,
    The default is warn
    [default: warn] [currently: warn]

mode.sim_interactive : boolean
    Whether to simulate interactive mode for purposes of testing
    [default: False] [currently: False]

mode.use_inf_as_null : boolean
    True means treat None, NaN, INF, -INF as null (old way),
    False means None and NaN are null, but INF, -INF are not null
    (new way).
    [default: False] [currently: False]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/159626.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vue.js与jquery的区别_说出两者之间的区别

    vue.js与jquery的区别_说出两者之间的区别jQuery:曾经是前端最流行的js库。Vue:是一个兴起的js库,是一个精简的MVVM。从技术角度讲。Vue.js专注于MVVM模型的ViewModel层,它通过双向数据绑定把view和Model层连接起来,通过对数据的操作完成对页面视图的渲染。二者的区别是:一、Vue和jQuery对比jquery是使用选择器()选取DOM对象,对其进行赋值、取值、事件绑定等操作,和原生的HTML的区别只在于可以更方便的选取和操作DOM对象,而数据和界面是在一起的。二、Vue则是通过Vue对.

    2022年10月16日
    4
  • 第四章 软件项目进度管理

    第四章 软件项目进度管理本章内容提要第一节软件项目进度管理概述l进l进度是对执行的活动和里程碑所制定的工作计划日期表。l项目进度管理也被称作项目时间管理、工期管理,是指在项目实施过程中,对各阶段的工作进展程度和项目最终完成的期限所进行的管理,是为了确保项目按期完成所需要的管理过程。l项目进度管理是保证项目如期完成及合理安排资源供应,节约工程成本的重要措施之一。度是对执行的活动和里程碑所制定的工作计划日期表。l项目进度管…

    2022年5月20日
    38
  • 求两个对角向上、列索引是偶数的元件和。

    求两个对角向上、列索引是偶数的元件和。

    2022年1月10日
    53
  • C++中voliate关键字

    C++中voliate关键字voliate变量是随时变化的,用voliate修饰的运算,编译器不进行优化,以免出错。对于一个普通变量,为提高存取速率,编译器会先将变量的值存储在一个寄存器中,以后再取变量值时,就存寄存器中取出。但是用voliate修饰的变量,就说明这个变量会发生意向不到的改变。也就是说,优化器每次在读取该值时,不会假设这个值了,每次都会小心的在读取这个变量的值,而不是在寄存器中取保留的备份。那么,…

    2022年6月6日
    33
  • java.lang.Class类详解

    java.lang.Class类详解1.Class类与类的关系 Java程序运行时,系统一直对所有的对象进行所谓的运行时类型标识。这项信息纪录了每个对象所属的类。虚拟机通常使用运行时类型信息选准正确方法去执行,用来保存这些类型信息的类是Class类。Class类封装一个对象和接口运行时的状态,当装载类时,Class类型的对象自动创建。说白了,Class类对象就是封装了一个类的类型信息,可以通过该对象操作其对应的类,即发射机制。

    2022年5月29日
    36
  • 【NOIP2011】聪明的质检员

    【NOIP2011】聪明的质检员2.聪明的质监员(qc.cpp/c/pas)小T是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi。检验矿产的流程是:1、给定m个区间[Li,Ri];2、选出一个参数W;3、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi:这批矿产的检验结果Y为各个区间

    2025年12月3日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号