傅里叶变换公式整理

傅里叶变换公式整理1、一维傅里叶变换1.1一维连续傅里叶变换正变换:F(ω)=∫−∞∞f(t)⋅e−iωtdtF(\omega)=\int_{-\infty}^{\infty}f(t)\cdote^{-i\omegat}dtF(ω)=∫−∞∞​f(t)⋅e−iωtdt逆变换:f(t)=∫−∞∞F(ω)⋅eiωtdωf(t)=\int_{-\infty}^{\infty}F(\o…

大家好,又见面了,我是你们的朋友全栈君。

1、一维傅里叶变换

1.1 一维连续傅里叶变换

  • 正变换:

F ( ω ) = ∫ − ∞ ∞ f ( t ) ⋅ e − i ω t d t F(\omega) = \int_{-\infty}^{\infty}f(t)\cdot e^{-i\omega t}dt F(ω)=f(t)eiωtdt

  • 逆变换:

f ( t ) = ∫ − ∞ ∞ F ( ω ) ⋅ e i ω t d ω f(t) = \int_{-\infty}^{\infty}F(\omega)\cdot e^{i\omega t}d\omega f(t)=F(ω)eiωtdω

1.2 一维离散傅里叶变换

  • 正变换:

F ( u ) = ∑ x = 0 N − 1 f ( x ) ⋅ e − i 2 π N x u u = 0 , 1 , 2 , . . . , N − 1 F(u) = \sum_{x=0}^{N-1}f(x)\cdot e^{-i\frac{2\pi}{N}xu} \\ u = 0,1,2, … , N-1 F(u)=x=0N1f(x)eiN2πxuu=0,1,2,...,N1

  • 逆变换:

f ( x ) = 1 N ∑ u = 0 N − 1 F ( u ) ⋅ e i 2 π N x u x = 0 , 1 , 2 , . . . , N − 1 f(x) = \frac{1}{N}\sum_{u=0}^{N-1}F(u)\cdot e^{i\frac{2\pi}{N}xu}\\x = 0,1,2, … , N-1 f(x)=N1u=0N1F(u)eiN2πxux=0,1,2,...,N1

2、二维傅里叶变换

2.1 二维连续傅里叶变换

  • 正变换
    F ( u , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) e − j 2 π ( u x + v y ) d x d y F(u,v)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi(ux+vy)}dxdy F(u,v)=f(x,y)ej2π(ux+vy)dxdy

  • 逆变换
    f ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ F ( u , v ) e j 2 π ( u x + v y ) d u d v f(x,y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(u,v)e^{j2\pi(ux+vy)}dudv f(x,y)=F(u,v)ej2π(ux+vy)dudv

2.2 二维离散傅里叶变换

令f(x,y)表示一幅大小为MXN像素的数字图像,其中,x=0,1,2,…,M-1, y=0,1,2,…,N-1,由F(u,v)表示的f(x,y)的二维离散傅里叶变换(DFT)由下式给出:

F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x M + v y N ) u , v = 0 , 1 , 2 , . . . , N − 1 F(u,v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{ux}{M}+\frac{vy}{N})}\\u,v = 0, 1, 2, … , N-1 F(u,v)=x=0M1y=0N1f(x,y)ej2π(Mux+Nvy)u,v=0,1,2,...,N1

式子当中,u也是属于0到M-1,v属于0到N-1。频率域就是属于u,v作为频率变量,由F(u,v)构成的坐标系,这块MXN的区域我们通常称为频率矩形,很明显频率矩形的大小和输入图像的大小相同。

有傅里叶变换,当然就有傅里叶反变换(IDFT):
f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x M + v y N ) x , y = 0 , 1 , 2 , . . . , N − 1 f(x,y) = \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi(\frac{ux}{M}+\frac{vy}{N})}\\ x,y = 0, 1, 2, … , N-1 f(x,y)=MN1u=0M1v=0N1F(u,v)ej2π(Mux+Nvy)x,y=0,1,2,...,N1

clc,clear;
a = [1 2 3 5 5 ; 4 7 9 5 4;1 4 6 7 5;5 4 3 7 1;8 7 5 1 3];%a矩阵取5*5
b = [1 5 4; 3 6 8; 1 5 7]; %b矩阵如多数模板一样取3*3
c = conv2(a,b)
d = conv2(a,b,'same')

a(7,7) = 0;
b(7,7) = 0;
e = ifft2(fft2(a).*fft2(b)) % .* 对应元素相乘

%
c =
     1     7    17    28    42    45    20
     7    39    89   127   134   110    56
    14    61   151   212   229   177    87
    12    74   165   226   245   174    72
    24    98   178   190   179   155    55
    29    98   179   139   112    80    31
     8    47    96    75    43    22    21
%

%
d =

    39    89   127   134   110
    61   151   212   229   177
    74   165   226   245   174
    98   178   190   179   155
    98   179   139   112    80
%

%
e =

    1.0000    7.0000   17.0000   28.0000   42.0000   45.0000   20.0000
    7.0000   39.0000   89.0000  127.0000  134.0000  110.0000   56.0000
   14.0000   61.0000  151.0000  212.0000  229.0000  177.0000   87.0000
   12.0000   74.0000  165.0000  226.0000  245.0000  174.0000   72.0000
   24.0000   98.0000  178.0000  190.0000  179.0000  155.0000   55.0000
   29.0000   98.0000  179.0000  139.0000  112.0000   80.0000   31.0000
    8.0000   47.0000   96.0000   75.0000   43.0000   22.0000   21.0000
%
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/160825.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • mapGetters开启命名空间

    mapGetters开启命名空间https://www.cnblogs.com/sea-breeze/p/11321961.html

    2022年5月27日
    48
  • 中级java面试题_最新中级Java面试题及答案

    中级java面试题_最新中级Java面试题及答案1.Java的HashMap是如何工作的?HashMap是一个针对数据结构的键值,每个键都会有相应的值,关键是识别这样的值。HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象。当获取对象时,通过键对象的equals()方法找到…

    2022年6月16日
    29
  • 数字图像处理标准图像Lena的故事「建议收藏」

    数字图像处理标准图像Lena的故事「建议收藏」熟悉图像处理或者压缩的工程师、研究人员和学生经常在他们的实验或者项目任务里使用“Lenna”或者“Lena”的图像。Lenna图像已经成为被广泛使用的测试图像。今天,Lenna图像的使用被认为是数字图像历史上最重要的事件之一。然而,很少有人看过原始的图像并知道完整的关于Lenna的故事。这里3sBeta将综合收集的材料对此做一个详细的梳理。。。1.Lena图像的来源在数

    2022年6月19日
    32
  • 微信公众平台开发入门教程[2020版]

    微信公众平台开发入门教程[2020版]在这篇微信公众平台开发教程中,我们假定你已经有了PHP语言程序、MySQL数据库、计算机网络通讯、及HTTP/XML/CSS/JS等基础。我们将使用微信公众账号方倍工作室作为讲解的例子,二维码见左侧。本系列教程将引导你完成如下任务:创建新浪云计算平台应用 启用微信公众平台开发模式 体验常用接收消息及发送消息类型 了解数据收发原理及消息格式第一章申请服务器资源创建新浪云计算应用申请账号我们使用SAE新浪云计算平台作为服务器资源,并且申请PHP环境+MySQL数据库作为程.

    2022年6月6日
    258
  • python强制类型转换astype

    python强制类型转换astype在进行将多个表的数据合并到一个表后,发现输出到EXCEL表的数据发生错误,数值型数据末尾都变成了0。这是因为excel数据超过11位,自动以科学计数法显示,其最大处理精度为15位,超过15位,以后数字自动变0。找了一些解决方法,发现用.astype(‘数据类型’)还是挺方便的。我在输出时,将数值型的数据(int)转化成了字符串(str)。使用方法:df.astype(‘数据类型’)  …

    2022年6月11日
    76
  • 国内最流行且免费的11个服务器监控工具

    国内最流行且免费的11个服务器监控工具国内最流行且免费的11个服务器监控工具,拿走不谢!作者:水淼日期:2017-03-2809:00:43人气:3…

    2022年4月30日
    78

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号