离散傅里叶变换公式推导

离散傅里叶变换公式推导离散傅里叶变换公式推导先抛变换公式:Fm=∑n=0N−1fne−2πimn/N↔fn=1N∑m=0N−1Fme2πimn/NF_m=\sum_{n=0}^{N-1}f_ne^{-2\piimn/N}\leftrightarrowf_n=\frac{1}{N}\sum_{m=0}^{N-1}F_me^{2\piimn/N}Fm​=n=0∑N−1​fn​e−2πimn/N↔fn​=N1​m=0∑N−1​Fm​e2πimn/N式中的N是数据点个数讲道理一开始完全看不懂公式这么来的,一顿百度后我学

大家好,又见面了,我是你们的朋友全栈君。

离散傅里叶变换公式推导

先抛变换公式:
F m = ∑ n = 0 N − 1 f n e − 2 π i m n / N ↔ f n = 1 N ∑ m = 0 N − 1 F m e 2 π i m n / N F_m=\sum_{n=0}^{N-1}f_ne^{-2\pi imn/N}\leftrightarrow f_n=\frac{1}{N}\sum_{m=0}^{N-1}F_me^{2\pi imn/N} Fm=n=0N1fne2πimn/Nfn=N1m=0N1Fme2πimn/N
式中的N是数据点个数
讲道理一开始完全看不懂公式这么来的,一顿百度后我学到了很多,但就是没学到怎么推公式。好吧只能自己推。
先来看一下DFT的物理意义:DFT示意图
(图我网上随便下的)
离散傅里叶变换是把周期性离散信号变换到频域上,大家知道,周期信号变到频域上是离散的。离散就是在个别点 { x n } \{x_n\} {
xn}
有值。我是学物理的,物理里面离散的可以这么表示:
f ( x ) = ∑ n = 0 N − 1 f n δ ( x − x n ) f(x)=\sum_{n=0}^{N-1}f_n\delta(x-x_n) f(x)=n=0N1fnδ(xxn)
δ ( x ) \delta(x) δ(x)是个在 x = 0 x=0 x=0处无穷大,其余位置为0且全空间积分为1的函数 ∫ − ∞ ∞ δ ( x ) d x = 1 \int_{-\infty}^{\infty}\delta(x)dx=1 δ(x)dx=1

周期性信号变到频域上,那不就是傅里叶级数吗。自然有公式
F m = ∫ − T T ∑ n = 0 N − 1 f n δ ( x − x n ) e − i x k m d x = ∑ n = 0 N − 1 ∫ f n δ ( x − x n ) e − i x k m d x = ∑ n = 0 N − 1 f n e − i x n k m \begin{aligned} F_m &= \int_{-T}^{T}\sum_{n=0}^{N-1}f_n\delta(x-x_n)e^{-ixk_m}dx \\&=\sum_{n=0}^{N-1}\int f_n\delta(x-x_n)e^{-ixk_m}dx \\&=\sum_{n=0}^{N-1}f_ne^{-ix_nk_m} \end{aligned} Fm=TTn=0N1fnδ(xxn)eixkmdx=n=0N1fnδ(xxn)eixkmdx=n=0N1fneixnkm
接下来我们假设 d x , d k dx,dk dx,dk分别是 { x n } \{x_n\} {
xn}
, { k n } \{k_n\} {
kn}
的间距,那么:
x n = n d x , k m = m d k x_n=ndx,\qquad k_m = mdk xn=ndx,km=mdk
代入上式:
F m = ∑ n = 0 N − 1 f n e − i x n k m = ∑ n = 0 N − 1 f n e − i m n d x d k \begin{aligned} F_m &=\sum_{n=0}^{N-1}f_ne^{-ix_nk_m} \\&=\sum_{n=0}^{N-1}f_ne^{-imndxdk} \end{aligned} Fm=n=0N1fneixnkm=n=0N1fneimndxdk
是不是和最上面的式子很接近了?还差最后一步,确定 d x d k dxdk dxdk的值。
下面我懒得写了,只说一下做法吧

  1. 先写出 F m F_m Fm f n f_n fn的逆变换,
    f n = c ∑ n = 0 N − 1 F m e i m n d x d k f_n = c\sum_{n=0}^{N-1}F_me^{imndxdk} fn=cn=0N1Fmeimndxdk
    c c c是个系数,之后应该能计算出是 1 / N 1/N 1/N
  2. 把上面的 F m F_m Fm表达式带进去,就能得到用 f n ′ f_{n’} fn求和表达的 f n f_n fn,这要求 d x d k dxdk dxdk满足一定关系,其实就是满足 d x d k = 2 π N dxdk = \frac{2\pi}{N} dxdk=N2π
  3. 最后把公式里的 d x d k dxdk dxdk替换就完事了

这个公式推导倒是不难,主要问题是理解不要出现偏差。所谓离散傅里叶变换是把周期离散信号变换到周期离散频谱,这是真的离散信号。一开始我以为是连续信号在某些给定点采样得到的值呢(没有学过信号相关的内容,在计算物理中遇到了这个离散傅里叶变换)。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/160837.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • oracle提示未明确定义列_oracle数据库免费吗

    oracle提示未明确定义列_oracle数据库免费吗这种情况出现的原因一般是列名重复。数据库中创建如下表进行测试:createtableqq_test(aintPRIMARYkey,bvarchar2(32))首先执行:selecta,b,afromqq_test;执行结果如下:再执行:select*from(selecta,b,afromqq_test);执行结果如下:去掉重复的列名,或者用别名代替既可,如:select*from(select…

    2022年10月4日
    0
  • python激活码2021【2021.8最新】

    (python激活码2021)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~S32PGH0SQB-eyJsaWNlbnNlSWQiOi…

    2022年3月26日
    92
  • 共享锁、排他锁、互斥锁、悲观锁、乐观锁、行锁、表锁、页面锁、不可重复读、丢失修改、读脏数据

    点击上方“全栈程序员社区”,星标公众号 重磅干货,第一时间送达 作者:T-Birds blog.csdn.net/weixin_36634753/article/details/9…

    2021年6月28日
    97
  • 队列的顺序存储结构之循环队列

    队列的顺序存储结构之循环队列一、队列的定义队列(queue)是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。队列是一种先进先出(FirstInFirstOut)的线性表,简称FIFO。允许插入的一端称为队尾,允许删除的一端称为队头。如图所示:二、循环队列的引出为了避免当队中只剩一个元素的时候,队头队尾重合使处理变得麻烦。所以我们引入两个指针,front指针指向队头元素,rear指针指向队尾元素…

    2022年5月22日
    36
  • linux文件重命名命令rename_修改文件名linux

    linux文件重命名命令rename_修改文件名linuxlinux下重命名文件有两种方式:1.较简单的处理命令:mvmv原文件名新文件名如:mvmyFilenewName将MyFile重命名为newName.2.linux提供了一个重命名文件命令:renamerenamefromtofile1file2。。。如:renamemyFilenewNamemyFile.text将myFile.text重命名为newName.text这个命令在批量重命名是更好用如:renamemyFilenewNamemy

    2022年9月11日
    0
  • 100道最新Java面试题,常见面试题及答案汇总

    除了掌握扎实的专业技能之外,你还需要一份《Java程序员面试宝典》才能在万千面试者中杀出重围,成功拿下offer。小编特意整理了100道Java面试题,送给大家,希望大家都能顺利通过面试,拿下高薪。赶紧码住吧~~Q1:Java内部类和子类之间有什么区别?答案:内部类是指在一个外部类的内部再定义一个类,内部类对外部类有访问权限,可以访问类中定义的所有变量和方法。子类是从父类(superclass)中继承的类,子类可以访问父类所有public和protected的字段和方法。Q2:Java语言中有哪些

    2022年4月16日
    118

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号