Lucene分词实现:Analyzer、TokenStream「建议收藏」

Lucene分词实现:Analyzer、TokenStream「建议收藏」Lucene分词实现(二次开发流程)1.1  分词流程在Lucene3.0中,对分词主要依靠Analyzer类解析实现。Analyzer内部主要通过TokenStream类实现。Tonkenizer类、TokenFilter类是TokenStream的两个子类。Tokenizer处理单个字符组成的字符流,读取Reader对象中的数据,处理后转换成词汇单元。Tokne

大家好,又见面了,我是你们的朋友全栈君。

Lucene分词实现(二次开发流程)

1.1  分词流程

在Lucene3.0中,对分词主要依靠Analyzer类解析实现。Analyzer内部主要通过TokenStream类实现。Tonkenizer类、TokenFilter类是TokenStream的两个子类。Tokenizer处理单个字符组成的字符流,读取Reader对象中的数据,处理后转换成词汇单元。TokneFilter完成文本过滤器的功能,但在使用过程中必须注意不同的过滤器的使用的顺序。

Lucene分词实现:Analyzer、TokenStream「建议收藏」

1.2  分词扩展具体流程

1.2.1  Analyzer类分析

(1)所有的分词器都需要继承于Analyzer抽象类,它定义了tokenStream抽象方法。

public abstract class Analyzer {

   public abstract TokenStream tokenStream(String fieldName, Reader reader);
  public TokenStream reusableTokenStream(String fieldName, Reader reader){}
}

该抽象类规定了Analyzer需要实现的一些方法。

(2)public abstract TokenStream tokenStream(String fieldName, Reader reader);

该方法需要自定义的分词器去实现,并返回TokenStream,即将对象以Reader的方式输入分词为fieldName字段。

TokenStream:分词流,即将对象分词后所得的Token在内存中以流的方式存在,也说是说如果在取得Token必须从TokenStream中获取,而分词对象可以是文档文本,也可以是查询文本。

参数说明:

fieldName——字段名,也就是你建索引的时候对应的字段名,比如:Field f = new Field(“title”,”hello”,Field.Store.YES, Field.Index.TOKENIZED);这句中的”title”;

reader——java.io.Reader对象;

(3)public TokenStream reusableTokenStream(String fieldName, Reader reader)。设置为可复用TokenStream,将同一线程中前面时间的TokenStream设置为可复用。那些无必要同一时刻使用多个TokenStream的调用者使用这个方法,可以提升性能。

(4)接着,在tokenStream()方法实现中使用Tonkenizer和TokenFilter,例如StandardAnalyzer类中的tokenStream实现:

TokenStream result = new StandardTokenizer(reader);//表示用StandardTokenizer对这个要分词的reader进行处理,然后返回一个TokenStream对象
result = new StandardFilter(result);//表示对生成的TokenStream对象进行标准过滤(Filter)
result = new LowerCaseFilter(result);//表示对上面由”StandardFilter”过滤后的TokenStream对象再进行次过滤,转化为小写

result = new StopFilter(result, stopSet);//接下来再进行次过滤,去掉停止词
5return result;//得到最终结果

由此可以看出,主要的分词环节是Tokenizer类执行,而Filter负责数据的预处理和分词后处理且数量不限。

1.2.2  TokenStream类分析

TokenStream是一个抽象类,枚举词序列,要么是从一个文档的域得来,要么是从一个查询文本中得到。主要任务有:

(1)获取下一Token;

(2)重设流(可选);

(3)关闭流,释放资源;

 public Token next();//取得词序列中的下一个词

public Token next(final Token reusableToken);//输入可复用的Token,作为初始参数,可以返回一个新的Token

 public void reset();

 public void close();

在Lucene3以后,next方法改为了incrementToken,并增加了end方法。

public abstract boolean incrementToken() throws IOException;

public void end() throws IOException;

 

 

1.2.3  Tokenizer类分析

Tokenizer类是继承于TokenStream的一个抽象类,是一个输入为Reader的TokenStream。

其职责是:

(1)接收输入流并根据输入流进行词切分。

因此,该类是定制分词器的核心之一。

publicabstractclass Tokenizer extends TokenStream {

  protected Reader input;//增加了输入流Reader

  protected Tokenizer() {}

  protected Tokenizer(Reader input) {

    this.input = input;

  }

   publicvoid close() throws IOException {

    input.close();

  }

 

  /**设置input到一个新的Reader*/

  publicvoid reset(Reader input) throws IOException {

    this.input = input;

  }

}

在Tokenizer类中,核心的方法是next方法,以CharTokenizer为例。

 publicfinal Token next(final Token reusableToken) throws IOException {

    assert reusableToken != null;

    reusableToken.clear();

    int length = 0;

    int start = bufferIndex;//起始位置

    char[] buffer = reusableToken.termBuffer();

    while (true) {

      if (bufferIndex >= dataLen) {//如果缓冲取大于数据长度,再读取到缓冲区

        offset += dataLen;

        dataLen = input.read(ioBuffer);

        if (dataLen == -1) {

          if (length > 0)

            break;

          else

            returnnull;

        }

         = 0;

      }

      finalchar c = ioBuffer[bufferIndex++];//无论如何都取一个字符

      if (isTokenChar(c)) {// if it’s a token char

        if (length == 0)                               // start of token

          start = offset + bufferIndex – 1;

        elseif (length == buffer.length)

          buffer = reusableToken.resizeTermBuffer(1+length);

        buffer[length++] = normalize(c); // buffer it, normalized

        if (length == MAX_WORD_LEN) // buffer overflow!

          break;

      } elseif (length > 0) // at non-Letter w/ chars

        break;                  // return ’em

    }

    reusableToken.setTermLength(length);

    reusableToken.setStartOffset(start);

    reusableToken.setEndOffset(start+length);

    return reusableToken;

  }

1.2.4 TokenFilter类分析

TokenFilter类继承于TokenStream,其输入是另一个TokenStream,主要职责是对TokenStream进行过滤,例如去掉一些索引词、替代同义索引词等操作。

 

1.2.5  Token类分析

(1)Token属性

lucene里定义了几种基本属性:

1)TermAttribute:表示token的字符串信息。比如”I’m”;

2)TypeAttribute:表示token词典类别信息,默认为“Word”,比如I’m就属于<APOSTROPHE>,有撇号的类型;

3)OffsetAttribute:表示token的首字母和尾字母在原文本中的位置。比如I’m的位置信息就是(0,3),需要注意的是startOffset与endOffset的差值并不一定就是termText.length(),因为可能term已经用stemmer或者其他过滤器处理过;

4)PositionIncrementAttribute:这个有点特殊,它表示tokenStream中的当前token与前一个token在实际的原文本中相隔的词语数量,用于短语查询。比如: 在tokenStream中[2:a]的前一个token是[1:I’m ],它们在原文本中相隔的词语数是1,则token=”a”的PositionIncrementAttribute值为1;

5)PayloadAttribute,payload即负载量意思,是每个term出现一次则存储一次的元数据,它存储于特定term的posting list内部。

6)FlagsAttribute,用于在Tokenizer链之前传递标记(因为前面一个操作可能会影响后面的操作)。

那么这个属性有什么用呢,用处很大的。加入我们想搜索一个短语student apples(假如有这个短语)。很显然,用户是要搜索出student apples紧挨着出现的文档。这个时候我们找到了某一篇文档(比如上面例子的字符串)都含有student apples。但是由于apples的PositionIncrementAttribute值是5,说明肯定没有紧挨着。

(2)核心方法

前面几个属性都作为其成员变量。

l  set、get方法

l  hashCode方法

(为什么要HASH?便于另一种方式去映射,常用的HASH算法有哪些?)

其典型的hash代码是code = code * 31 + startOffset,

l  copyTo方法

复制到另一个AttributeImpl中。

l  reflectWith方法

属性反射,从Token对象中解析得出属性。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163083.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java中如何进行异常处理_java检查时异常

    java中如何进行异常处理_java检查时异常运行时异常是Java编程语言所有异常的父类,这些异常在发生时会崩溃或崩溃,可能会破坏程序或应用程序。与不被视为运行时异常的异常不同,永远不会检查运行时异常。“运行时异常”通常显示程序员的错误,而不是预期程序要处理的条件。当无法发生的情况时,也会使用运行时异常。应该注意的是,当程序内存不足时,将引发程序错误,而不是将其显示为运行时异常。最常见的运行时异常为NullPointerException,A…

    2022年9月29日
    4
  • spring aop保存日志案例,附有项目下载链接[通俗易懂]

    spring aop保存日志案例,附有项目下载链接[通俗易懂]spring aop保存日志案例,附有项目下载链接

    2022年4月24日
    33
  • 【数据结构】字典树TrieTree图文详解

    【数据结构】字典树TrieTree图文详解问题引入现在,我给你n个单词,然后进行q次询问,每一次询问一个单词b,问你b是否出现在n个单词中,你会如何去求呢?暴力搜索?但是我们如果这么做的话时间复杂度一下就高上去了。大家都是成熟的ACMer了,不要再惦记着暴力的方法啦,要优雅。你想想,问题的描述像不像查字典的操作?你平时是怎么查字典的?想想看?如果你要在字典中查找单词“Avalon”,你是不是先找到首字母为‘A’的部分,然后再找第二个单词为‘V’的部分······最后,你可能可以找到这个单词,当然,也有可能这本词典并没有这个单词。你想想看,

    2025年9月26日
    5
  • quotedStr() 应用–DELPHI「建议收藏」

    quotedStr() 应用–DELPHI「建议收藏」varcsql,cstr:string;begin//quotedStr(edit1.text)以说是在sql查询分析器里给字符串edit1.text加个单引号,可以完全抛开delphi的语法.cStr…

    2022年10月17日
    2
  • 方法区和常量池_字符串常量池在堆中还是方法区

    方法区和常量池_字符串常量池在堆中还是方法区最近一直被方法区里面存着什么东西困扰着?    1.方法区里存class文件信息和class文件常量池是个什么关系。    2.class文件常量池和运行时常量池是什么关系。         方法区存着类的信息,常量和静态变量,即类被编译后的数据。这个说法其实是没问题的,只是太笼统了。更加详细一点的说法是方法区里存放着类的版本,字段,方法,接口和常量池。

    2025年10月14日
    3
  • kubernetes经典收藏[通俗易懂]

    kubernetes经典收藏[通俗易懂]kubernetes如何在Kubernetes中编写自定义控制器以图形化的方式简单介绍KubernetesIngress以图形化的方式简单介绍KubernetesService浅聊Kubernetes的各种认证策略以及适用场景基于Kubernetes的服务网格介绍如何编写一个CoreDNS插件问题Kubernetes疑难杂症排查分享:神秘的溢出与丢包…………

    2022年7月22日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号