【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]BirthdayToyTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):466    AcceptedSubmission(s):238ProblemDescriptionAekdyCoinloves

大家好,又见面了,我是你们的朋友全栈君。

Birthday Toy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 466    Accepted Submission(s): 238




Problem Description
AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “Toy”.

The “Toy” is in bulk and AekdyCoin has to make one by him. Let’s assume that the “Toy” has N small white beads and one Big bead .If someone want to make a “Toy”, he (or she) must always puts the Big bead in center, and then connect the other N small beads around it by using N sticks with equal length, and then the N small beads must be connected by N sticks with equal length, and it could be seen as a regular polygon. Figure 1 shows a “Toy” with 8 small white beads and one big white bead.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin has C kinds of available color, say blue, green, yellow, pink …etc. He wants to color these beads, but he thinks that must be too boring and stupid. So he colors these beads with one role: any adjacent beads couldn’t have same color. Figure 2 shows a legal situation, and Figure 3 shows an illegal situation.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]




【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


It seems that the “Toy” becomes more interesting for AekdyCoin right now; however, he wants to color the big bead in center. Of course, he should follow the role above.

Now AekdyCoin begins to play with the “Toy”, he always colors the big beads and then the other small beads. He should color under the rule above. After several minutes, AekdyCoin finally makes a perfect “Toy”. Figure 4 shows a situation that is under the color rule.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


AekdyCoin now want to know the different method to color the “Toy” whit at most K color. (“Toy” contains N small beads and one big bead.)

But, no, the problem is not so easy .The repetitions that are produced by rotation around the center of the circular necklace are all neglected. Figure 5 shows 8 “Toy”, they are regard as one method.


【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin will give you N and K, he wants you to help him calculate the number of different methods, because the number of method is so huge, so AekdyCoin just want you to tell him the remainder when divided by M.

In this problem, M = 1,000,000,007.

 


Input
The input consists of several test cases.(at least 1000)

Every case has only two integers indicating N, K 

(3<=N<=10^9, 4<=K<=10^9)

 


Output
For each case, you should output a single line indicates the remainder of number of different methods after divided by M.
 


Sample Input
  
  
  
3 4 3 5 3 17 162 78923
 


Sample Output
  
  
  
8 40 19040 19469065
 


Source

题意:n个小圆组成的正n边形,中间有一个大圆。有木棍相连的两个圆不能有相同的颜色,旋转后相同视为相同的方案,求着色方案数。

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

设有n个小圆,k种颜色(3<=N<=10^9, 4<=K<=10^9)。

首先,很容易想到从k种选一种给大圆,然后用k-1种颜色对小圆着色。

若不存在相邻圆颜色不同这个限制,则直接Burnside定理。

若存在限制,但是颜色种数很少,可以构造矩阵然后快速幂,得到一个置换使着色不变的着色方案数。

现在颜色种数很多,但是颜色限制较简单,可以考虑公式之类的。

考虑将n个圆的环,等分成t部分,每部分有m个圆。F表示m个圆满足限制的着色方案数。

若m=1,则F=0

若m=2,则F=k*(k-1)

若m=3,则F=k*(k-1)*(k-2)

若m=4,则F=k*(k-1)*[(k-1)+(k-2)*(k-2)]

……

观察到F[n]=F[n-1]*(k-2)+F[n-2]*(k-1)。

那么就可以对该递推式构造矩阵快速幂得到每种分法的方案数。

剩下的同【POJ】2888 Magic Bracelet

#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
#define mod 1000000007
const int MAXN = 2;
struct Matrix
{
    long long mat[MAXN][MAXN];
    void Zero()
    {
        memset(mat, 0, sizeof(mat));
    }
    void Unit()
    {
        memset(mat, 0, sizeof(mat));
        for (int i = 0; i < MAXN; i++)
            mat[i][i] = 1;
    }
    void Build(long long k)
    {
        Zero();
        mat[0][1] = 1;
        mat[0][0] = k - 2;
        mat[1][0] = k - 1;
    }
    void output()
    {
        for(int i=0;i<MAXN;i++)
        {
            for(int j=0;j<MAXN;j++)
            {
                printf("%d ", mat[i][j]);
            }
            printf("\n");
        }
    }
};

Matrix operator*(Matrix &a, Matrix &b)
{
    Matrix tmp;
    tmp.Zero();
    for (int k = 0; k < MAXN; k++)
    {
        for (int i = 0; i < MAXN; i++)
        {
            if (!a.mat[i][k])
                continue;
            for (int j = 0; j < MAXN; j++)
            {
                tmp.mat[i][j] += a.mat[i][k] * b.mat[k][j]%mod;
                if( tmp.mat[i][j]>=mod)
                    tmp.mat[i][j]-=mod;
            }

        }
    }
    return tmp;
}
Matrix operator ^(Matrix a, int k)
{
    Matrix tmp;
    tmp.Unit();
    for (; k; k >>= 1)
    {
        if (k & 1)
            tmp = tmp * a;
        a = a * a;
    }
    return tmp;
}
std::vector<int> prime;
const int  MAXPR = 320000;
bool vispr[MAXPR];
void Init()
{
    prime.clear();
    memset(vispr, 1, sizeof(vispr));
    int sqrtnum = (int)(sqrt((double)MAXPR) + EPS);
    for (int i = 2; i < sqrtnum; i++)
    {
        if (vispr[i])
            for (int j = i * i; j < MAXN; j += i)
                vispr[j] = false;
    }
    for (int i = 2; i < MAXPR; i++)
    {
        if (vispr[i])
            prime.push_back(i);
    }
}
LL Ext_gcd(LL a, LL b, LL &x, LL &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    LL ret = Ext_gcd(b, a % b, y, x);
    y -= a / b * x;
    return ret;
}
LL Inv(LL a, LL m)   ///求逆元a相对于m
{
    LL d, x, y, t = m;
    d = Ext_gcd(a, t, x, y);
    if (d == 1) return (x % t + t) % t;
    return -1;
}
//复杂度根号x
std::vector<int> factor;
void Factor(int n)
{
    factor.clear();
    int i;
    for (i = 1; i * i < n; i++)
    {
        if (n % i == 0)
        {
            factor.push_back(i);
            factor.push_back(n / i);
        }
    }
    if (i * i == n)
        factor.push_back(i);
}
long long F(int n, int k)
{
    long long res;
    if (n == 1)
        res = 0;
    else if (n == 2)
        res = (long long)k * (k - 1);
    else if (n == 3)
        res = (long long)k * (k - 1) % mod * (k - 2);
    else
    {
        Matrix g;
        g.Build(k);
        g = g ^ (n - 3);
        // g.output();
        res = g.mat[0][0] * k % mod * (k - 1) % mod * (k - 2);
        res += g.mat[1][0] * k % mod * (k - 1);
    }
    return (res) % mod;
}
int eular(int n)
{
    int i, res = 1;
    for (i = 2; i * i <= n; ++i)
    {
        if (n % i == 0)
        {
            n /= i; res *= i - 1;
            while (n % i == 0)
            {
                n /= i; res *= i;
            }
        }
    }
    if (n > 1)   res *= n - 1;
    return res;
}
int eularbyPR(int x)
{
    int res, i;
    res = x;
    for (i = 0; prime[i] * prime[i] <= x; i++)
    {
        if (x % prime[i] == 0)
        {
            res -= res / prime[i];
            while (x % prime[i] == 0)
                x /= prime[i];
        }
    }
    if (x > 1)
        res -= res / x;
    return res;
}
long long Burnside(int n, int k)
{
    long long ans=0;
    int i;
    Factor(n);
    for (i = 0; i < factor.size(); i++)
    {
        ans += F(factor[i], k) * eular(n / factor[i]) % mod;
         if (ans >= mod)
            ans -= mod;
    }
    return (ans * Inv(n, mod) + mod) % mod;
}
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n, k;
    Init();
    while (scanf("%d%d", &n, &k) + 1)
    {
        printf("%I64d\n", (Burnside(n, k - 1)*k + mod) % mod);
    }

    return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163385.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 解决安装MATLAB2018b时出现License Manager Error -8(许可证管理器错误)的问题

    解决安装MATLAB2018b时出现License Manager Error -8(许可证管理器错误)的问题原博文的地址 1、解压的时候要将两个iso解压到同一个文件夹,意思是第一个解压得到R2018_win_dvd1,第二个解压得到R2018_win_dvd2,要将第二个文件夹里的内容复制到第一个文件夹中。2、matlab2018b是没有R2018b这个文件夹的,其他教程里说什么将netapi32….

    2022年7月26日
    113
  • 安卓ExpandableListView的详细使用教程(附代码解析过程)

    安卓ExpandableListView的详细使用教程(附代码解析过程)ExpandableListView又称可扩展的ListView,它可以实现点击父项展开子项的效果,本文实现了一个比较精美的ExpandableListView。

    2022年6月30日
    15
  • 汉罗塔问题_6层汉诺塔最少步骤

    汉罗塔问题_6层汉诺塔最少步骤Hanoi汉诺塔是一个发源于印度的益智游戏,也叫河内塔。相传它源于印度神话中的大梵天创造的三个金刚柱,一根柱子上叠着上下从小到大64个黄金圆盘。大梵天命令婆罗门将这些圆盘按从小到大的顺序移动到另一根柱子上,其中大圆盘不能放在小圆盘上面。当这64个圆盘移动完的时候,世界就将毁灭。好吧上面这个东西是我直接百度copy的.这个源自孤古印度的游戏,还是有点意思的,也和递归扯上关系.但是我不明白…

    2022年10月12日
    0
  • ICEM-二维Y型网格的一种做法

    ICEM-二维Y型网格的一种做法原视频下载地址:https://pan.baidu.com/s/1nvSBHoP密码:uqy3 转载于:https://www.cnblogs.com/liusuanyatong/p/11259902.html

    2022年5月20日
    33
  • idea 设置黑色或白色背景以及图片背景

    idea 设置黑色或白色背景以及图片背景idea编辑软件在怎么设置黑色或者白色背景点击File–>setting(或者Ctrl+Alt+S)–>Editor–> Color scheme–>General 选择好风格之后,Apply–>OK 最后弹框中点击Yes即可。————————————————–…

    2022年6月13日
    40
  • ubuntu OpenGrok的搭建

    ubuntu OpenGrok的搭建下载apache-tomcat-8.5.37和opengrok-0.12.1.5,解压。(这两个版本可以使用jdk1.7)安装sudoapt-getinstallexuberant-ctags添加环境变量#tomcat目录exportOPENGROK_TOMCAT_BASE=~/openGrok/apache-tomcat-8.5.37#修改目录,不用/var…

    2022年6月7日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号