【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]BirthdayToyTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):466    AcceptedSubmission(s):238ProblemDescriptionAekdyCoinloves

大家好,又见面了,我是你们的朋友全栈君。

Birthday Toy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 466    Accepted Submission(s): 238




Problem Description
AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “Toy”.

The “Toy” is in bulk and AekdyCoin has to make one by him. Let’s assume that the “Toy” has N small white beads and one Big bead .If someone want to make a “Toy”, he (or she) must always puts the Big bead in center, and then connect the other N small beads around it by using N sticks with equal length, and then the N small beads must be connected by N sticks with equal length, and it could be seen as a regular polygon. Figure 1 shows a “Toy” with 8 small white beads and one big white bead.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin has C kinds of available color, say blue, green, yellow, pink …etc. He wants to color these beads, but he thinks that must be too boring and stupid. So he colors these beads with one role: any adjacent beads couldn’t have same color. Figure 2 shows a legal situation, and Figure 3 shows an illegal situation.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]




【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


It seems that the “Toy” becomes more interesting for AekdyCoin right now; however, he wants to color the big bead in center. Of course, he should follow the role above.

Now AekdyCoin begins to play with the “Toy”, he always colors the big beads and then the other small beads. He should color under the rule above. After several minutes, AekdyCoin finally makes a perfect “Toy”. Figure 4 shows a situation that is under the color rule.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


AekdyCoin now want to know the different method to color the “Toy” whit at most K color. (“Toy” contains N small beads and one big bead.)

But, no, the problem is not so easy .The repetitions that are produced by rotation around the center of the circular necklace are all neglected. Figure 5 shows 8 “Toy”, they are regard as one method.


【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin will give you N and K, he wants you to help him calculate the number of different methods, because the number of method is so huge, so AekdyCoin just want you to tell him the remainder when divided by M.

In this problem, M = 1,000,000,007.

 


Input
The input consists of several test cases.(at least 1000)

Every case has only two integers indicating N, K 

(3<=N<=10^9, 4<=K<=10^9)

 


Output
For each case, you should output a single line indicates the remainder of number of different methods after divided by M.
 


Sample Input
  
  
  
3 4 3 5 3 17 162 78923
 


Sample Output
  
  
  
8 40 19040 19469065
 


Source

题意:n个小圆组成的正n边形,中间有一个大圆。有木棍相连的两个圆不能有相同的颜色,旋转后相同视为相同的方案,求着色方案数。

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

设有n个小圆,k种颜色(3<=N<=10^9, 4<=K<=10^9)。

首先,很容易想到从k种选一种给大圆,然后用k-1种颜色对小圆着色。

若不存在相邻圆颜色不同这个限制,则直接Burnside定理。

若存在限制,但是颜色种数很少,可以构造矩阵然后快速幂,得到一个置换使着色不变的着色方案数。

现在颜色种数很多,但是颜色限制较简单,可以考虑公式之类的。

考虑将n个圆的环,等分成t部分,每部分有m个圆。F表示m个圆满足限制的着色方案数。

若m=1,则F=0

若m=2,则F=k*(k-1)

若m=3,则F=k*(k-1)*(k-2)

若m=4,则F=k*(k-1)*[(k-1)+(k-2)*(k-2)]

……

观察到F[n]=F[n-1]*(k-2)+F[n-2]*(k-1)。

那么就可以对该递推式构造矩阵快速幂得到每种分法的方案数。

剩下的同【POJ】2888 Magic Bracelet

#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
#define mod 1000000007
const int MAXN = 2;
struct Matrix
{
    long long mat[MAXN][MAXN];
    void Zero()
    {
        memset(mat, 0, sizeof(mat));
    }
    void Unit()
    {
        memset(mat, 0, sizeof(mat));
        for (int i = 0; i < MAXN; i++)
            mat[i][i] = 1;
    }
    void Build(long long k)
    {
        Zero();
        mat[0][1] = 1;
        mat[0][0] = k - 2;
        mat[1][0] = k - 1;
    }
    void output()
    {
        for(int i=0;i<MAXN;i++)
        {
            for(int j=0;j<MAXN;j++)
            {
                printf("%d ", mat[i][j]);
            }
            printf("\n");
        }
    }
};

Matrix operator*(Matrix &a, Matrix &b)
{
    Matrix tmp;
    tmp.Zero();
    for (int k = 0; k < MAXN; k++)
    {
        for (int i = 0; i < MAXN; i++)
        {
            if (!a.mat[i][k])
                continue;
            for (int j = 0; j < MAXN; j++)
            {
                tmp.mat[i][j] += a.mat[i][k] * b.mat[k][j]%mod;
                if( tmp.mat[i][j]>=mod)
                    tmp.mat[i][j]-=mod;
            }

        }
    }
    return tmp;
}
Matrix operator ^(Matrix a, int k)
{
    Matrix tmp;
    tmp.Unit();
    for (; k; k >>= 1)
    {
        if (k & 1)
            tmp = tmp * a;
        a = a * a;
    }
    return tmp;
}
std::vector<int> prime;
const int  MAXPR = 320000;
bool vispr[MAXPR];
void Init()
{
    prime.clear();
    memset(vispr, 1, sizeof(vispr));
    int sqrtnum = (int)(sqrt((double)MAXPR) + EPS);
    for (int i = 2; i < sqrtnum; i++)
    {
        if (vispr[i])
            for (int j = i * i; j < MAXN; j += i)
                vispr[j] = false;
    }
    for (int i = 2; i < MAXPR; i++)
    {
        if (vispr[i])
            prime.push_back(i);
    }
}
LL Ext_gcd(LL a, LL b, LL &x, LL &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    LL ret = Ext_gcd(b, a % b, y, x);
    y -= a / b * x;
    return ret;
}
LL Inv(LL a, LL m)   ///求逆元a相对于m
{
    LL d, x, y, t = m;
    d = Ext_gcd(a, t, x, y);
    if (d == 1) return (x % t + t) % t;
    return -1;
}
//复杂度根号x
std::vector<int> factor;
void Factor(int n)
{
    factor.clear();
    int i;
    for (i = 1; i * i < n; i++)
    {
        if (n % i == 0)
        {
            factor.push_back(i);
            factor.push_back(n / i);
        }
    }
    if (i * i == n)
        factor.push_back(i);
}
long long F(int n, int k)
{
    long long res;
    if (n == 1)
        res = 0;
    else if (n == 2)
        res = (long long)k * (k - 1);
    else if (n == 3)
        res = (long long)k * (k - 1) % mod * (k - 2);
    else
    {
        Matrix g;
        g.Build(k);
        g = g ^ (n - 3);
        // g.output();
        res = g.mat[0][0] * k % mod * (k - 1) % mod * (k - 2);
        res += g.mat[1][0] * k % mod * (k - 1);
    }
    return (res) % mod;
}
int eular(int n)
{
    int i, res = 1;
    for (i = 2; i * i <= n; ++i)
    {
        if (n % i == 0)
        {
            n /= i; res *= i - 1;
            while (n % i == 0)
            {
                n /= i; res *= i;
            }
        }
    }
    if (n > 1)   res *= n - 1;
    return res;
}
int eularbyPR(int x)
{
    int res, i;
    res = x;
    for (i = 0; prime[i] * prime[i] <= x; i++)
    {
        if (x % prime[i] == 0)
        {
            res -= res / prime[i];
            while (x % prime[i] == 0)
                x /= prime[i];
        }
    }
    if (x > 1)
        res -= res / x;
    return res;
}
long long Burnside(int n, int k)
{
    long long ans=0;
    int i;
    Factor(n);
    for (i = 0; i < factor.size(); i++)
    {
        ans += F(factor[i], k) * eular(n / factor[i]) % mod;
         if (ans >= mod)
            ans -= mod;
    }
    return (ans * Inv(n, mod) + mod) % mod;
}
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n, k;
    Init();
    while (scanf("%d%d", &n, &k) + 1)
    {
        printf("%I64d\n", (Burnside(n, k - 1)*k + mod) % mod);
    }

    return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163385.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 阿里为什么要在北京建总部_阿里正式offer审批流程

    阿里为什么要在北京建总部_阿里正式offer审批流程开篇由于疫情的缘故,钉钉算是脱颖而出,下载量而话题度直线攀升,巧的是,我也在这个特殊时间里接到了阿里钉钉的邀请。本人毕业于华南地区某不知名211院校,Java方向,目前钉钉三面已经结束,基本可以说是坐上了“直通车”,收到的反馈都是比较好的,跟HR沟通感觉希望很大,按道理来说拿下offer是没有太大问题的,以下内容就是我这次的钉钉远程面试经历的一个分享和一些心得,希望对大家能够有所帮助。以下主要分享…

    2022年9月24日
    5
  • Windows ping TCP端口工具之tcping「建议收藏」

    Windows ping TCP端口工具之tcping「建议收藏」ping这个小工具大家都非常熟悉,但是他不能ping端口,当我们需要知道目的地址的某端口是否开放时,这时需要用到这个tcping小工具了,Windows没有自带这个小工具,需要自己下载下来,放到指定目录里面。下载地址:点击打开链接X64下载链接放到C:\Windows\System32这个文件夹下现在在测试一下…

    2022年6月23日
    152
  • EasyPlayer支持YUV数据导出功能

    EasyPlayer支持YUV数据导出功能我们可能会遇到这样的功能,播放一个视频的同时,再把这个视频推送出去,或者对视频数据进行智能分析等处理.这样我们就迫切需要得到视频的原始数据.基于这个需求,EasyPlayer增加了获取视频YUV数据的功能.它的原理是这样的:CreatedwithRaphaël2.1.2EasyPlayerClientEasyPlayerClientDecoderDecoderYUVYUV读取媒体…

    2022年6月25日
    27
  • 【032】JavaScript 计算笛卡尔积[通俗易懂]

    【032】JavaScript 计算笛卡尔积[通俗易懂]这是一个用JavaScript实现笛卡尔积的例子。注意:本文中所说的集合是指数学上的集合,不是es6里的Set。整体思路如下:用户传入一个二维的数组,每个子数组都是一个要进行笛卡尔积计算的集合。返回一个二维数组,每个子数组都是一个有序对或者n元有序组。当用户传入一个集合的时候,为了兼容业务,返回形如:[[a],[b]…]的二维数组。当用户只传入两个集合计算的时候,普通的嵌套计算即可。当用

    2022年7月11日
    15
  • Ajax beforeSend和complete 方法

    Ajax beforeSend和complete 方法

    2021年10月9日
    44
  • 蚁剑安装以及使用方法

    蚁剑安装以及使用方法一 蚁剑如何安装蚁剑安装分两个步骤一个是下载源代码 还有一个加载器 用加载器去加载源代码 下载的的文件路径一定要记得蚁剑源码下载 https github com AntSwordProj antSword 蚁剑加载器下载 https github com AntSwordProj AntSword Loader 下载之后解压缩之后是这样的点击 AntSword Loader v4 0 3 win32 x64 这个文件打开 AntSword exe 点击初始化点击初始化点击选

    2025年12月10日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号