【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]BirthdayToyTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):466    AcceptedSubmission(s):238ProblemDescriptionAekdyCoinloves

大家好,又见面了,我是你们的朋友全栈君。

Birthday Toy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 466    Accepted Submission(s): 238




Problem Description
AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “Toy”.

The “Toy” is in bulk and AekdyCoin has to make one by him. Let’s assume that the “Toy” has N small white beads and one Big bead .If someone want to make a “Toy”, he (or she) must always puts the Big bead in center, and then connect the other N small beads around it by using N sticks with equal length, and then the N small beads must be connected by N sticks with equal length, and it could be seen as a regular polygon. Figure 1 shows a “Toy” with 8 small white beads and one big white bead.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin has C kinds of available color, say blue, green, yellow, pink …etc. He wants to color these beads, but he thinks that must be too boring and stupid. So he colors these beads with one role: any adjacent beads couldn’t have same color. Figure 2 shows a legal situation, and Figure 3 shows an illegal situation.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]




【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


It seems that the “Toy” becomes more interesting for AekdyCoin right now; however, he wants to color the big bead in center. Of course, he should follow the role above.

Now AekdyCoin begins to play with the “Toy”, he always colors the big beads and then the other small beads. He should color under the rule above. After several minutes, AekdyCoin finally makes a perfect “Toy”. Figure 4 shows a situation that is under the color rule.



【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


AekdyCoin now want to know the different method to color the “Toy” whit at most K color. (“Toy” contains N small beads and one big bead.)

But, no, the problem is not so easy .The repetitions that are produced by rotation around the center of the circular necklace are all neglected. Figure 5 shows 8 “Toy”, they are regard as one method.


【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]


Now AekdyCoin will give you N and K, he wants you to help him calculate the number of different methods, because the number of method is so huge, so AekdyCoin just want you to tell him the remainder when divided by M.

In this problem, M = 1,000,000,007.

 


Input
The input consists of several test cases.(at least 1000)

Every case has only two integers indicating N, K 

(3<=N<=10^9, 4<=K<=10^9)

 


Output
For each case, you should output a single line indicates the remainder of number of different methods after divided by M.
 


Sample Input
  
  
  
3 4 3 5 3 17 162 78923
 


Sample Output
  
  
  
8 40 19040 19469065
 


Source

题意:n个小圆组成的正n边形,中间有一个大圆。有木棍相连的两个圆不能有相同的颜色,旋转后相同视为相同的方案,求着色方案数。

【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888[通俗易懂]

设有n个小圆,k种颜色(3<=N<=10^9, 4<=K<=10^9)。

首先,很容易想到从k种选一种给大圆,然后用k-1种颜色对小圆着色。

若不存在相邻圆颜色不同这个限制,则直接Burnside定理。

若存在限制,但是颜色种数很少,可以构造矩阵然后快速幂,得到一个置换使着色不变的着色方案数。

现在颜色种数很多,但是颜色限制较简单,可以考虑公式之类的。

考虑将n个圆的环,等分成t部分,每部分有m个圆。F表示m个圆满足限制的着色方案数。

若m=1,则F=0

若m=2,则F=k*(k-1)

若m=3,则F=k*(k-1)*(k-2)

若m=4,则F=k*(k-1)*[(k-1)+(k-2)*(k-2)]

……

观察到F[n]=F[n-1]*(k-2)+F[n-2]*(k-1)。

那么就可以对该递推式构造矩阵快速幂得到每种分法的方案数。

剩下的同【POJ】2888 Magic Bracelet

#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
#define mod 1000000007
const int MAXN = 2;
struct Matrix
{
    long long mat[MAXN][MAXN];
    void Zero()
    {
        memset(mat, 0, sizeof(mat));
    }
    void Unit()
    {
        memset(mat, 0, sizeof(mat));
        for (int i = 0; i < MAXN; i++)
            mat[i][i] = 1;
    }
    void Build(long long k)
    {
        Zero();
        mat[0][1] = 1;
        mat[0][0] = k - 2;
        mat[1][0] = k - 1;
    }
    void output()
    {
        for(int i=0;i<MAXN;i++)
        {
            for(int j=0;j<MAXN;j++)
            {
                printf("%d ", mat[i][j]);
            }
            printf("\n");
        }
    }
};

Matrix operator*(Matrix &a, Matrix &b)
{
    Matrix tmp;
    tmp.Zero();
    for (int k = 0; k < MAXN; k++)
    {
        for (int i = 0; i < MAXN; i++)
        {
            if (!a.mat[i][k])
                continue;
            for (int j = 0; j < MAXN; j++)
            {
                tmp.mat[i][j] += a.mat[i][k] * b.mat[k][j]%mod;
                if( tmp.mat[i][j]>=mod)
                    tmp.mat[i][j]-=mod;
            }

        }
    }
    return tmp;
}
Matrix operator ^(Matrix a, int k)
{
    Matrix tmp;
    tmp.Unit();
    for (; k; k >>= 1)
    {
        if (k & 1)
            tmp = tmp * a;
        a = a * a;
    }
    return tmp;
}
std::vector<int> prime;
const int  MAXPR = 320000;
bool vispr[MAXPR];
void Init()
{
    prime.clear();
    memset(vispr, 1, sizeof(vispr));
    int sqrtnum = (int)(sqrt((double)MAXPR) + EPS);
    for (int i = 2; i < sqrtnum; i++)
    {
        if (vispr[i])
            for (int j = i * i; j < MAXN; j += i)
                vispr[j] = false;
    }
    for (int i = 2; i < MAXPR; i++)
    {
        if (vispr[i])
            prime.push_back(i);
    }
}
LL Ext_gcd(LL a, LL b, LL &x, LL &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    LL ret = Ext_gcd(b, a % b, y, x);
    y -= a / b * x;
    return ret;
}
LL Inv(LL a, LL m)   ///求逆元a相对于m
{
    LL d, x, y, t = m;
    d = Ext_gcd(a, t, x, y);
    if (d == 1) return (x % t + t) % t;
    return -1;
}
//复杂度根号x
std::vector<int> factor;
void Factor(int n)
{
    factor.clear();
    int i;
    for (i = 1; i * i < n; i++)
    {
        if (n % i == 0)
        {
            factor.push_back(i);
            factor.push_back(n / i);
        }
    }
    if (i * i == n)
        factor.push_back(i);
}
long long F(int n, int k)
{
    long long res;
    if (n == 1)
        res = 0;
    else if (n == 2)
        res = (long long)k * (k - 1);
    else if (n == 3)
        res = (long long)k * (k - 1) % mod * (k - 2);
    else
    {
        Matrix g;
        g.Build(k);
        g = g ^ (n - 3);
        // g.output();
        res = g.mat[0][0] * k % mod * (k - 1) % mod * (k - 2);
        res += g.mat[1][0] * k % mod * (k - 1);
    }
    return (res) % mod;
}
int eular(int n)
{
    int i, res = 1;
    for (i = 2; i * i <= n; ++i)
    {
        if (n % i == 0)
        {
            n /= i; res *= i - 1;
            while (n % i == 0)
            {
                n /= i; res *= i;
            }
        }
    }
    if (n > 1)   res *= n - 1;
    return res;
}
int eularbyPR(int x)
{
    int res, i;
    res = x;
    for (i = 0; prime[i] * prime[i] <= x; i++)
    {
        if (x % prime[i] == 0)
        {
            res -= res / prime[i];
            while (x % prime[i] == 0)
                x /= prime[i];
        }
    }
    if (x > 1)
        res -= res / x;
    return res;
}
long long Burnside(int n, int k)
{
    long long ans=0;
    int i;
    Factor(n);
    for (i = 0; i < factor.size(); i++)
    {
        ans += F(factor[i], k) * eular(n / factor[i]) % mod;
         if (ans >= mod)
            ans -= mod;
    }
    return (ans * Inv(n, mod) + mod) % mod;
}
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n, k;
    Init();
    while (scanf("%d%d", &n, &k) + 1)
    {
        printf("%I64d\n", (Burnside(n, k - 1)*k + mod) % mod);
    }

    return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163385.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vue 调用子组件方法失败_Vue子组件调用父组件的方法及常见问题「建议收藏」

    vue 调用子组件方法失败_Vue子组件调用父组件的方法及常见问题「建议收藏」1.子组件内不允许直接修改父组件传过来的参数。错误实例:子组件代码直接对data参数进行修改,则会提示错误。vue.runtime.esm.js?2b0e:619[Vuewarn]:Avoidmutatingapropdirectlysincethevaluewillbeoverwrittenwhenevertheparentcomponentre-render…

    2022年10月2日
    0
  • 菜鸟教程java的list_Java菜鸟教程

    菜鸟教程java的list_Java菜鸟教程分阶段进阶教学+阶段考评让学习无死角因为考虑学员基础水平参差不齐,所以动力节点的课程安排对学员进行科学细致的划分,整个教学安排共分两大部分即:基础部分和就业部分,基础部分课程由教学总监定制最适合零基础入门的课程大纲;就业部分课程由教研部实地探访名企如百度、京东、新浪等企业,将最前沿的技术引入到课堂,同时又根据就业课程的深度不同划分为7个阶段,每个阶段都有不同的技术侧重点,层层深入。纵观来看,动力…

    2022年6月13日
    28
  • jboss版本_输入法下载

    jboss版本_输入法下载昨天和今天到jboss区下载jboss4.0.4或者其他版本,没有一个下的了,太烂了,网站怎能这样,现在是什么时代呀,免费的或者收费的服务都应该要做的很好才是.感觉现在的软件的功能远远没有达到我心目中理想的位置,也不知何年何月我才对会软件的功能称好!也许软件就是这样吧,开发要成本,做得很好是几乎不可能的了.

    2022年9月28日
    1
  • SeasLog 与 monolog 日志系统的区别,SeasLog安装步骤[通俗易懂]

    SeasLog 与 monolog 日志系统的区别,SeasLog安装步骤

    2022年2月18日
    64
  • 简单教你写xsync和xcall的脚本

    简单教你写xsync和xcall的脚本xsync配置xsync脚本基于rsync工具,rsync远程同步工具,主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点,它只是拷贝文件不同的部分,因而减少了网络负担。rsync-rvl$pdir/$fname$user@hadoop$host:$pdir常用参数:-r,–recursive对子目录以递归模式处理-R,–relative使用相对路径信…

    2022年5月28日
    34
  • 正则表达式匹配任意字符(包括换行符)[通俗易懂]

    正则表达式匹配任意字符(包括换行符)[通俗易懂]可以用([\s\S]*),也可以用“([\d\D]*)”、“([\w\W]*)”来匹配,就可以匹配包括换行符在内的任意字符。http://tools.jb51.net/regex/javas

    2022年7月1日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号