matlab中wavedec2,wavedec2函数详解[通俗易懂]

matlab中wavedec2,wavedec2函数详解[通俗易懂]很多人对小波多级分解的wavedec2总是迷惑,今天就详释她!wavedec2函数:1.功能:实现图像(即二维信号)的多层分解,多层,即多尺度.2.格式:[c,s]=wavedec2(X,N,’wname’)[c,s]=wavedec2(X,N,Lo_D,Hi_D)(我不讨论它)3.参数说明:对图像X用wname小波基函数实现N层分解,这里的小波基函数应该根据实际情况选择,具体选择办法可以搜之或者…

大家好,又见面了,我是你们的朋友全栈君。

很多人对小波多级分解的wavedec2总是迷惑,今天就详释她!

wavedec2函数:

1.功能:实现图像(即二维信号)的多层分解,多层,即多尺度.

2.格式:[c,s]=wavedec2(X,N,’wname’)

[c,s]=wavedec2(X,N,Lo_D,Hi_D)(我不讨论它)

3.参数说明:对图像X用wname小波基函数实现N层分解,

这里的小波基函数应该根据实际情况选择,具体选择办法可以搜之或者 help WFILTERS

.输出为c,s.

c为各层分解系数,s为各层分解系数长度,也就是大小.

4.c的结构:c=[A(N)|H(N)|V(N)|D(N)|H(N-1)|V(N-1)|D(N-1)|H(N-2)|V(N-2)|D(N-2)|…|H(1)|V(1)|D(1)]

可见,c是一个行向量,即:1*(size(X)),(e.g,X=256*256,then

c大小为:1*(256*256)=1*65536)

A(N)代表第N层低频系数,H(N)|V(N)|D(N)代表第N层高频系数,分别是水平,垂直,对角高频,以此类推,到H(1)|V(1)|D(1).

每个向量是一个矩阵的每列转置的组合存储。原文:Each vector is the vector

column-wise storage of a matrix. 这是你理解A(N) H(N) | V(N) | D(N)

的关键。

很多人对wavedec2和dwt2的输出差别不可理解,后者因为是单层分解,所以低频系数,水平、垂直、对角高频系数就直接以矩阵输出了,没有像wavedec2那样转换成行向量再输出,我想你应该不再迷惑了。

a4c26d1e5885305701be709a3d33442f.png

那么S有什么用呢?

s的结构:是储存各层分解系数长度的,即第一行是A(N)的长度(其实是A(N)的原矩阵的行数和列数),

第二行是H(N)|V(N)|D(N)|的长度,

第三行是

H(N-1)|V(N-1)|D(N-1)的长度,

倒数第二行是H(1)|V(1)|D(1)长度,

最后一行是X的长度(大小)

a4c26d1e5885305701be709a3d33442f.png

从上图可知道:cAn的长度就是32*32,cH1、cV1、cD1的长度都是256*256。

到此为止,你可能要问C的输出为什么是行向量?

1、没有那一种语言能够动态输出参数的个数,更何况C语言写的Matlab

2、各级详细系数矩阵的大小(size)不一样,所以不能组合成一个大的矩阵输出。

因此,把结果作为行向量输出是最好,也是唯一的选择。

另:MATLAB HELP

wavedec2 里面说得非常明白了,呵呵.

wavedec2

Multilevel 2-D

wavelet decomposition Syntax [C,S] =

wavedec2(X,N,’wname’)

[C,S] = wavedec2(X,N,Lo_D,Hi_D)

Description wavedec2 is a two-dimensional wavelet analysis

function.

[C,S] =

wavedec2(X,N,’wname’) returns the wavelet decomposition of the

matrix X at level N, using the wavelet named in string ‘wname’ (see

wfilters for more information).

Outputs are the

decomposition vector C and the corresponding bookkeeping matrix S.

N must be a strictly positive integer (see wmaxlev for more

information).

Instead of giving the

wavelet name, you can give the filters. For [C,S] =

wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter

and Hi_D is the decomposition high-pass filter.

Vector C is organized

as C = [ A(N) | H(N) | V(N) | D(N) | … H(N-1) | V(N-1) | D(N-1) |

… | H(1) | V(1) | D(1) ]. where A, H, V, D, are row vectors such

that A = approximation coefficients H = horizontal detail

coefficients V = vertical detail coefficients D = diagonal detail

coefficients Each vector is the vector column-wise storage of a

matrix.

Matrix S is such that

S(1,:) = size of approximation coefficients(N) S(i,:) = size of

detail coefficients(N-i+2) for i = 2, …N+1 and S(N+2,:) =

size(X)

Examples% The current

extension mode is zero-padding (see dwtmode).

% Load original

image. load woman; % X contains the loaded image.

% Perform

decomposition at level 2 % of X using db1. [c,s] = wavedec2(X,2,’db1′);

% Decomposition

structure organization. sizex = size(X)

sizex =

256

256

sizec = size(c)

sizec =

1

65536

val_s =

s

val_s =

64

64 64

64 128

128 256

256

Algorithm For images, an algorithm similar to the

one-dimensional case is possible for two-dimensional wavelets and

scaling functions obtained from one-dimensional ones by tensor

product. This kind of two-dimensional DWT leads to a decomposition

of approximation coefficients at level j in four components: the

approximation at level j+1, and the details in three orientations

(horizontal, vertical, and diagonal). The following chart describes

the basic decomposition step for images: So, for J=2, the

two-dimensional wavelet tree has the form See Alsodwt, waveinfo,

waverec2, wfilters, wmaxlev ReferencesDaubechies, I. (1992), Ten

lectures on wavelets, CBMS-NSF conference series in applied

mathematics. SIAM Ed. Mallat, S. (1989), “A theory for

multiresolution signal decomposition: the wavelet representation,”

IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp.

674-693. Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1,

Hermann Ed. (English translation: Wavelets and operators, Cambridge

Univ. Press. 1993.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163763.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 观察float BIT

    观察float BIT

    2021年9月14日
    54
  • Java实现大整数乘法

    Java实现大整数乘法1问题描述计算两个大整数相乘的结果。2解决方案2.1蛮力法packagecom.liuzhen.chapter5;importjava.math.BigInteger;publicclassBigNumber{/**参数A:进行乘法运算的大整数A,用字符串形式表示*参数B:进行乘法运算的另一个大整数B,用字符串形式表示…

    2022年6月2日
    34
  • 【前端】HTML详细教程(下篇)[通俗易懂]

    【前端】HTML详细教程(下篇)[通俗易懂]❤️HTML必备知识详解❤️☀️第三部分:特殊符号❄️(1)什么是特殊符号?????(2)为什么需要特殊符号?☔️第四部分:表格⛄️(1)什么是表格?????(2)表格如今用来干啥?????(3)表格初识????实现效果:☁️第五部分:表单(很重要哦!!!)⚡️1.是什么&什么作用&哪些应用????(1)表单是什么?????(2)表单的作用?????(3)表单的应用?????2.表单(form)的属性:????3.表单常用的标签:????(1)input标签:????1.input标

    2022年6月21日
    21
  • pycharm2021年激活码【注册码】

    pycharm2021年激活码【注册码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月18日
    59
  • 利用opacity属性写过渡效果

    利用opacity属性写过渡效果opacity的意思是不透明性,opacity取值范围为0-1;opacity:0;表示完全透明,opacity:1;表示完全不透明。opacity:0于overflow:hidden不同,overflow:hidden会完全消除空间,opacity:0只是视觉上看不到,但是实际上会占用空间,这点我们常用来于:hover一起使用。<!DOCTYPEhtml><htmll…

    2022年5月25日
    56
  • python安装第三方库的方法_ios常用的第三方库

    python安装第三方库的方法_ios常用的第三方库在pyhton的学习中,相信大家通常都会碰到第三方库的安装问题,这个问题对于很多初学者而言头疼不已。这里我做一些简单的总结,如何正确高效地安装第三方库,少走弯路(毕竟都是我亲自踩过的坑,所以特地来总结一下,方便以后回顾和总结)!

    2022年10月14日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号