高精度快速阶乘算法

高精度快速阶乘算法    我在业余时间开发了一套《超大整数完全精度快速算法库》HugeCalc,可快速计算超大整数的加、减、乘、除(商/余)、乘方、开方,也可快速计算大数的Fibonacci数列、(双)阶乘、排列、组合等,还可完成超大整数数组的最大公约数、最小公倍数等数论运算,现在,该套软件已被华军、天空、电脑之家、天天等下载站点收录。    自在网上公开以来,广受网友关注,经常有网友来联系,想交流一些算法心

大家好,又见面了,我是你们的朋友全栈君。
    我在业余时间开发了一套《超大整数完全精度快速算法库》HugeCalc,可快速计算超大整数的加、减、乘、除(商/余)、乘方、开方,也可快速计算大数的 Fibonacci 数列、(双)阶乘、排列、组合等,还可完成超大整数数组的最大公约数、最小公倍数等数论运算,现在,该套软件已被华军、天空、电脑之家、天天等下载站点收录。

    自在网上公开以来,广受网友关注,经常有网友来联系,想交流一些算法心得。其中涉及最多的是关于“阶乘”算法,部分是在校大学生,也许是他们的毕业设计?:)

    这里,我就把关于该算法模块的核心部分,也就是一些关键点,整理出来,以供大家参考。



    阶乘,是求一组数列的乘积,其效率的高低,一、是取决于高精度乘法算法,二、是针对阶乘自身特点算法的优化。

    前者,是一种广为习知的技术,虽然不同算法效率可天壤之别,但终究可以通过学习获得,甚至可用鲁迅先生的“拿来主义”;

    后者,则有许多的发展空间,这里我将介绍一种由我完全独创的一种方法,欢迎大家讨论,如能起到“抛砖引玉”的效果,那就真正达到了目的。

    我在开发“阶乘”类算法时,始终遵循如下原则:

  • 参与高精度乘法算法的两数,大小应尽可能地相近;
  • 尽可能将乘法转化为乘方;
  • 尽可能地优先调用平方;

    言归正转,下面以精确计算 1000! 为例,阐述该算法:

    记 F1(n) = n*(n-1)*…*1;

       F2(n) = n*(n-2)*…*(2 or 1);

       Pow2(r) = 2^r;

    有 F1(2k+1) = F2(2k+1) * F2(2k)

           = Pow2(k) * F2(2k+1) * F1(k),

       F1(2k) = Pow2(k) * F2(2k-1) * F1(k),

    及 Pow2(u) * Pow2(v) = Pow2(u+v),

∴ 1000! =
F1(1000)

         = Pow2(500)*F2(999)*
F1(500)

         = Pow2(750)*F2(999)*F2(499)*
F1(250)

         = Pow2(875)*F2(999)*F2(499)*F2(249)*
F1(125)

         = Pow2(937)*F2(999)*F2(499)*F2(249)*F2(125)*
F1(62)

         = Pow2(968)*F2(999)*F2(499)*F2(249)*F2(125)*F2(61)*
F1(31)

         = Pow2(983)*F2(999)*F2(499)*F2(249)*F2(125)*F2(61)*F2(31)*
F1(15)

         = …

    如果你预存了某些小整数阶乘(比如这里的“
F1(15)”),则可提前终止分解,否则直至右边最后一项为“
F1(1)”为止;这样,我们
将阶乘转化为2的整数次幂与一些连续奇数的积(或再乘以一个小整数的阶乘)

    再定义:F2(e,f) = e*(e-2)*…*(f+2),这里仍用“F2”,就当是“函数重载”好了:),

    则 F2(e) = F2(e,-1) = F2(e,f)*F2(f,-1) (e、f为奇数,0≤f≤e)

∴ F2(999) = F2(999,499)*F2(499,249)*F2(249,125)*F2(125,61)*F2(61,31)*F2(31),

   F2(499) = ____________F2(499,249)*F2(249,125)*F2(125,61)*F2(61,31)*F2(31),

   F2(249) = ________________________F2(249,125)*F2(125,61)*F2(61,31)*F2(31),

   F2(125) = ____________________________________F2(125,61)*F2(61,31)*F2(31),

   F2( 61) = _______________________________________________F2(61,31)*F2(31),

   F2( 31) = _________________________________________________________F2(31),

∴ F1(1000) =
F1(15) * Pow2(983) * F2(999,499) /

                 * [F2(499,249)^2] * [F2(249,125)^3] /

                 * [F2(61,31)^4] * [F2(31)^5]

    这样,我们又
将阶乘转化为了乘方运算

    上式实际上是个形如 a * b^2 * c^3 * d^4 * e^5 的式子;我们再将指数转化为二进制,可得到如下公式:

        a * b^2 * c^3 * d^4 * e^5 = (a*c*e)*[(b*c)^2]*[(d*e)^4]

                                  =
(((e*d)^2)*(c*b))^2*(e*c*a),

即可
转化成了可充分利用高效的平方算法

    最后,我再提供大家一个
确保“小整数累乘不溢出”的技巧,这是我自创的,相信会对大家有借鉴作用:

  1. 应采用“倒序”,比方说,应按 999 * 997 * … 的顺序;
  2. 可预先设定一个数组,记录如果当前起始数组的最大值不大于某个值,则连乘多少个数不会溢出;
  3. 可利用“几何平均值≤算术平均值”定理,可推导出“ k 个自然数连乘不大于某个定值,其充分条件是其和不大于某个临界值”,我们只需要事先计算出它们的对应关系并保存下来。

    上述算法是
HugeCalc Ver1.2.0.1 的算法关键点,其效率已略高于liangbch(宝宝)的高级算法3.0版。

    在最新的
HugeCalc Ver2.1.0.1 中,采用的是更彻底的分解成质因数的方法,技巧性倒反不如上面的强(但却需要有高效的素数筛法),但里面的很多思想仍在延续。




备注:

Factorial.exe
Ver2.1.0.1
Celeron(tm) 466MHz
64MB RAM, Win98Sec
Pentium(R) 4 1.70GHz
256MB RAM, WinXP
Result
 10,000!   0.069s  0.031s 2.8462… x 10^35,659
 20,000!   0.236s  0.109s 1.8192… x 10^77,337
 40,000!   0.795s  0.390s 2.0916… x 10^166,713
 80,000!   2.661s  1.328s 3.0977… x 10^357,506
100,000!   4.177s  1.969s 2.8242… x 10^456,573
200,000!  13.663s  6.438s 1.4202… x 10^973,350
400,000!  43.818s 20.828s 2.5344… x 10^2,067,109
800,000! 139.337s 66.921s 5.6846… x 10^4,375,039
  1. 作者:郭先强;发布日期:2004-06-15
  2. 本文的初稿发表于著名的“CSDN – 技术社区 – 专题开发 数据结构与算法问题”
  3. 相关下载:超大整数完全精度快速计算器/算法库
    超大整数高精度快速计算器
  4. 版权所有,未经原作者授权,严禁转载!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/163998.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • c程序设计,贪吃蛇程序是什么_C语言编写贪吃蛇

    c程序设计,贪吃蛇程序是什么_C语言编写贪吃蛇C语言,贪吃蛇程序设计一.代码分析(1)头文件(2)宏定义(3)全局变量(4)函数部分1)绘制地图函数DreawMap(),2)食物位置函数FoodRand()3)键盘控制移动函数ControlMove()函数4)移动函数Move()函数5)蛇身开始函数Isnake()函数6)判断食物是否被吃到函数Jfood()函数7)判断是否碰到墙Jwell()函数8)判断是否碰到蛇身Jsnake()函数9)计算分数和难度Showf()函数10)清空存储空间函数二.代码附录一.代码分析(1)头文件1.include

    2025年7月22日
    3
  • navicat pe15激活码_在线激活

    (navicat pe15激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html1STL5S9V8F-eyJsaWNlbnNlSW…

    2022年3月27日
    43
  • 反射型xss偷取cookie(本地验证)

    反射型xss偷取cookie(本地验证)原理反射型xss为危害之一就是:用户在登录的情况下点击了黑客发送的链接,就会导致该网址的cookie泄露,导致帐号被黑客登录。

    2022年5月10日
    50
  • qca wlan wifi modules 解析四

    qca wlan wifi modules 解析四WiFi驱动架构的一般层次为:应用层BSDsocket层TCP/IP协议层IP层网络设备层net/coremac8011层/ieee80211设备驱动层具体实例如下图:上层应用程序简历socket,对网络接口进行ioctl操作,正是通过触发,网络设备和80211层,调用底层驱动函数来实现的。qcawlanmodules中,通过创建虚拟AP来实现WiFi功能,即VAP…

    2022年7月11日
    16
  • Hash Verification哈希值校验工具[通俗易懂]

    Hash Verification哈希值校验工具[通俗易懂]最后更新:2019-2-26HashVerification最新版:HashVerificationV1.0NEW!版本号:V1.0.0.14973大小:21KB/zip格式压缩,63KB/解压后 MD5校验码 SHA1校验码 2ad54536be68bd7446f82da1bd16b113 74610b4cd2fe675d…

    2022年9月13日
    2
  • 调度服务 ScheduledExecutorService 经常卡顿问题的排查及解决方法

    调度服务 ScheduledExecutorService 经常卡顿问题的排查及解决方法如上述代码所示,启动10个调度线程,延迟10秒,开始执行定时逻辑,然后每隔2秒执行一次定时任务。定时任务类为`TaskWorker`,其要做的事就是根据`offset`和`rows`参数,到数据库捞取指定范围的待处理记录,然后送到`TaskService`的`processTask`方法中进行处理。从逻辑上来看,该定时没有什么毛病,但是在执行定时任务的时候,却经常出现卡顿的问题,表现出来的现象就是:**定时任务不执行了**。

    2022年5月5日
    139

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号