神经网络的优化算法_梯度下降优化算法

神经网络的优化算法_梯度下降优化算法最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识。关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结。吴恩达的深度

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识。关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结。吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费):
https://mooc.study.163.com/smartSpec/detail/1001319001.htm

神经网络最基本的优化算法是反向传播算法加上梯度下降法。通过梯度下降法,使得网络参数不断收敛到全局(或者局部)最小值,但是由于神经网络层数太多,需要通过反向传播算法,把误差一层一层地从输出传播到输入,逐层地更新网络参数。由于梯度方向是函数值变大的最快的方向,因此负梯度方向则是函数值变小的最快的方向。沿着负梯度方向一步一步迭代,便能快速地收敛到函数最小值。这就是梯度下降法的基本思想,从下图可以很直观地理解其含义。
神经网络的优化算法_梯度下降优化算法

梯度下降法的迭代公式如下:

\[w=w-\alpha* dw \]

其中w是待训练的网络参数,\(\alpha\)是学习率,是一个常数,dw是梯度。以上是梯度下降法的最基本形式,在此基础上,研究人员提出了其他多种变种,使得梯度下降法收敛更加迅速和稳定,其中最优秀的代表便是Mommentum, RMSprop和Adam等。

Momentum算法

Momentum算法又叫做冲量算法,其迭代更新公式如下:

\[\begin{cases} v=\beta v+(1-\beta)dw \\ w=w-\alpha v \end{cases} \]

光看上面的公式有些抽象,我们先介绍一下指数加权平均,再回过头来看这个公式,会容易理解得多。

指数加权平均

假设我们有一年365天的气温数据\(\theta_1,\theta_2,…,\theta_{365}\),把他们化成散点图,如下图所示:
神经网络的优化算法_梯度下降优化算法

这些数据有些杂乱,我们想画一条曲线,用来表征这一年气温的变化趋势,那么我们需要把数据做一次平滑处理。最常见的方法是用一个华东窗口滑过各个数据点,计算窗口的平均值,从而得到数据的滑动平均值。但除此之外,我们还可以使用指数加权平均来对数据做平滑。其公式如下:

\[\begin{cases} v_0=0 \\ v_k=\beta v_{k-1}+(1-\beta)\theta_k, \quad k=1,2,…,365 \end{cases} \]

v就是指数加权平均值,也就是平滑后的气温。\(\beta\)的典型值是0.9,平滑后的曲线如下图所示:
神经网络的优化算法_梯度下降优化算法

对于\(v_k=\beta v_{k-1}+(1-\beta)\theta_k\),我们把它展开,可以得到如下形式:

\[\begin{split} v_k&=\beta v_{k-1}+(1-\beta)\theta_k \\ &=\beta^kv_0+\beta^{k-1}(1-\beta)\theta_1+\beta^{k-2}(1-\beta)\theta_2+\dots+\beta(1-\beta)\theta_{k-1}+(1-\beta)\theta_k \\ &=\beta^{k-1}(1-\beta)\theta_1+\beta^{k-2}(1-\beta)\theta_2+\dots+\beta(1-\beta)\theta_{k-1}+(1-\beta)\theta_k \end{split} \]

可见,平滑后的气温,是以往每一天原始气温的加权平均值,只是这个权值是随时间的远近而变化的,离今天越远,权值越小,且呈指数衰减。从今天往前数k天,它的权值为\(\beta^k(1-\beta)\)。当\(\beta=\frac{1}{1-\beta}\)时,由于\(\underset{\beta \rightarrow 1}{lim}\beta^k(1-\beta)=e^{-1}\),权重已经非常小,更久远一些的气温数据权重更小,可以认为对今天的气温没有影响。因此,可以认为指数加权平均计算的是最近\(\frac{1}{1-\beta}\)个数据的加权平均值。通常\(\beta\)取值为0.9,相当于计算10个数的加权平均值。但是按照原始的指数加权平均公式,还有一个问题,就是当k比较小时,其最近的数据太少,导致估计误差比较大。例如\(v_1=0.9 v_0 + (1-0.9)\theta_1=0.1\theta_1\)。为了减小最初几个数据的误差,通常对于k比较小时,需要做如下修正:

\[v_k=\frac{\beta v_{k-1}+(1-\beta)\theta_k}{1-\beta^k} \]

\(1-\beta^k\)是所有权重的和,这相当于对权重做了一个归一化处理。下面的图中,紫色的线就是没有做修正的结果,修正之后就是绿色曲线。二者在前面几个数据点之间相差较大,后面则基本重合了。
神经网络的优化算法_梯度下降优化算法

回看Momentum算法

现在再回过头来看Momentum算法的迭代更新公式:

\[\begin{cases} v=\beta v+(1-\beta)dw \\ w=w-\alpha v \end{cases} \]

\(dw\)是我们计算出来的原始梯度,\(v\)则是用指数加权平均计算出来的梯度。这相当于对原始梯度做了一个平滑,然后再用来做梯度下降。实验表明,相比于标准梯度下降算法,Momentum算法具有更快的收敛速度。为什么呢?看下面的图,蓝线是标准梯度下降法,可以看到收敛过程中产生了一些震荡。这些震荡在纵轴方向上是均匀的,几乎可以相互抵消,也就是说如果直接沿着横轴方向迭代,收敛速度可以加快。Momentum通过对原始梯度做了一个平滑,正好将纵轴方向的梯度抹平了(红线部分),使得参数更新方向更多地沿着横轴进行,因此速度更快。
神经网络的优化算法_梯度下降优化算法

RMSprop算法

对于上面的这个椭圆形的抛物面(图中的椭圆代表等高线),沿着横轴收敛速度是最快的,所以我们希望在横轴(假设记为w1)方向步长大一些,在纵轴(假设记为w2)方向步长小一些。这时候可以通过RMSprop实现,迭代更新公式如下:

\[\begin{cases} s_1=\beta_1 s_1+(1-\beta_1)dw_1^2 \\ s_2=\beta_2 s_2+(1-\beta_2)dw_2^2 \end{cases} \]

\[\begin{cases} w_1=w_1-\alpha \frac{dw_1}{\sqrt{s_1+\epsilon}} \\ w_2=w_2-\alpha \frac{dw_2}{\sqrt{s_2+\epsilon}} \end{cases} \]

观察上面的公式可以看到,s是对梯度的平方做了一次平滑。在更新w时,先用梯度除以\(\sqrt{s_1+\epsilon}\),相当于对梯度做了一次归一化。如果某个方向上梯度震荡很大,应该减小其步长;而震荡大,则这个方向的s也较大,除完之后,归一化的梯度就小了;如果某个方向上梯度震荡很小,应该增大其步长;而震荡小,则这个方向的s也较小,归一化的梯度就大了。因此,通过RMSprop,我们可以调整不同维度上的步长,加快收敛速度。把上式合并后,RMSprop迭代更新公式如下:

\[\begin{cases} s=\beta s+(1-\beta)dw^2 \\ w=w-\alpha\frac{dw}{\sqrt{s+\epsilon}} \end{cases} \]

\(\beta\)的典型值是0.999。公式中还有一个\(\epsilon\),这是一个很小的数,典型值是\(10^{-8}\)

Adam算法

Adam算法则是以上二者的结合。先看迭代更新公式:

\[\begin{cases} v=\beta_1 v+(1-\beta_1)dw \\ s=\beta_2 s+(1-\beta_2)dw^2 \\ w=w-\alpha\frac{v}{\sqrt{s+\epsilon}} \end{cases} \]

典型值:\(\beta_1=0.9, \quad \beta_2=0.999, \quad \epsilon=10^{-8}\)。Adam算法相当于先把原始梯度做一个指数加权平均,再做一次归一化处理,然后再更新梯度值。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166822.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 详细讲解 移植Uboot到ARM9开发系统上

    详细讲解 移植Uboot到ARM9开发系统上首先了解ARMer9开发系统硬件设计上和三星原装SMDK2410之间的区别。让uboot在ARMer9开发系统上跑起来,目前只需要关注如下的硬件区别,解决了下面这个问题,uboot就可以在ARMer9开发系统上正常地从串口输出,进入提示符。很多命令都可以使用,当然有些命令需要做修改。 SMDK2410:norFlash是AMD的1M的;ARMer9:是IntelE28F

    2022年5月1日
    46
  • Linux 修改目录下所有文件权限

    Linux 修改目录下所有文件权限sudochmod777/目录/-R

    2022年7月26日
    7
  • 关于数据库tinyint 字段的值范围「建议收藏」

    关于数据库tinyint 字段的值范围「建议收藏」tinyint从-2^7(-128)到2^7-1(123)的整型数据。存储大小为1个字节。unsigned是从0到255的整型数据。所以建表的时候只能是tinyint(3),哪怕你建tinyint(100),他最大还是3位这么多。转载于:https://www.cnblogs.com/jinhaidong/p/5944554.html…

    2022年9月14日
    2
  • django通用视图通俗讲解_django queryset合并

    django通用视图通俗讲解_django queryset合并前言上篇我们通过mixin可以非常方便的实现一些CURD操作。实际上针对这些mixin,DRF还进一步的进行了封装,放到generics下。有以下generic类视图:generics.ListA

    2022年7月31日
    8
  • tomcat java_tomcat和maven的区别

    tomcat java_tomcat和maven的区别缓存什么是缓存[Cache]存在内存中的临时数据将用户经常查询的数据放在缓存(内存)中,用户去查询数据的时候就不用从磁盘上(关系型数据库数据文件)查询,从缓存中查询,从而提高查询效率,解决了高并发系统的性能问题。为什么使用缓存减少和数据库的数据交换次数,较少系统开销,提高系统效率什么样的数据库能使用缓存经常查询并且不经常改变的数据Mybatis缓存MyBatis 内置了一个强大的事务性查询缓存机制,它可以非常方便地配置和定制。默认情况下,只启用了本地的会话缓存,它仅

    2022年8月8日
    4
  • python中关于命名的例子_Python 命名规范入门实例「建议收藏」

    python中关于命名的例子_Python 命名规范入门实例「建议收藏」这篇文章主要为大家详细介绍了Python命名规范入门实例,具有一定的参考价值,可以用来参考一下。对python这个高级语言感兴趣的小伙伴,下面一起跟随512笔记的小编两巴掌来看看吧!一,包名、模块名、局部变量名、函数名全小写+下划线式驼峰example:this_is_var二,全局变量全大写+下划线式驼峰example:GLOBAL_VAR三,类名首字母大写式驼峰example:ClassNa…

    2022年6月25日
    25

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号