随机漫步理论_随机漫步理论与巴菲特

随机漫步理论_随机漫步理论与巴菲特理论部分:代码部分:https://www.jianshu.com/p/numpy_test

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

理论部分:

 

 

代码部分:

import random
import matplotlib.pyplot as plt
import numpy as np
position = 0
walk = [position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)
#plt.plot(walk[:1000])


nsteps = 1000
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()  # 一维向量就可以这样来
#plt.plot(walk[:1000])

print( "min:" + str(walk.min()) )
print( "max:" + str(walk.max()) )
# 需要多久才能距离初始0点至少10步远(任一方向均可)
print((np.abs(walk) >= 10).argmax())


nwalks = 5000
nsteps = 1000
#模拟多个随机漫步过程(比如5000个)
draws = np.random.randint(-1, 1, size=(nwalks, nsteps)) # 0 or 1
print(draws)
steps = np.where(draws >= 0, 1, -1)
print(steps)
walks = steps.cumsum(1)
print(walks)
print("max: " + str(walks.max()) )
print("min: " + str(walks.min()))

# 用any方法来对此进行检查 因为不是5000个过程都到达了30的距离
hits30 = (np.abs(walks) >= 30).any(1)  
print("sum: " + str(hits30.sum()) )   # Number that hit 30 or -30
 
plt.plot(walks[0])
plt.plot(walks[1])
plt.plot(walks[2])
plt.plot(walks[3])
plt.plot(walks[4])
plt.plot(walks[5])
plt.plot(walks[6])
plt.plot(walks[7])
plt.plot(walks[8])

  

 随机漫步理论_随机漫步理论与巴菲特

随机漫步理论_随机漫步理论与巴菲特

 

https://www.jianshu.com/p/numpy_test  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167028.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号