三角形的五心_三角形面积相等的定律

三角形的五心_三角形面积相等的定律重心垂心外心内心旁心

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

  1. 概述
    1. 三角形的五心包括重心、垂心、外心、内心和旁心,是解决三角形问题的一种工具,也是一种研究对象。
    2. 前置知识:三角形等积变换、轴对称、相似、圆
  2. 内容
    1. 重心

      1. 重心的概念
        1. 三角形三条中线的交点,叫做三角形的重心,三角形的重心在三角形的内部
          三角形的五心_三角形面积相等的定律
          如图,G为△ABC的重心
      2. 重心的性质
        1. 基本性质
          1. 三角形重心与顶点的距离等于它与对应中点的距离的两倍,即$\displaystyle \frac{AG}{GD}=\frac{BG}{GE}=\frac{CG}{GF}=2$
          2. 证明1
            1. 由共边定理得
              三角形的五心_三角形面积相等的定律
            2. 由蝴蝶定理得
              三角形的五心_三角形面积相等的定律
            3. 于是有
              三角形的五心_三角形面积相等的定律
            4. 由共边定理得$\frac{AG}{DG}=\frac{\triangle ACG}{\triangle CDG}=2$
            5. 同理可推得其他边的关系
          3. 证明2
            1. 连接$DE$,由中位线得平行,得八字模型,由相似和中位线$\frac{1}{2}$得$2$倍
              三角形的五心_三角形面积相等的定律
        2. 推论1
          1. 设$G$是$\triangle ABC$中一点,若$S_{\triangle ABG}=S_{\triangle ABC}=\frac{1}{3}S_{\triangle ABC}$,则$G$为$\triangle ABC$的重心
            1. 证明
              1. 由共边定理(燕尾模型)得$\frac{BD}{CD}=\frac{S_{\triangle ABG}}{S_{\triangle ACG}}=1$,即$G$为$\triangle ABC$中点
              2. 同理可证其他中点
        3. 推论2
          1. $G$为$\triangle ABCD$的重心,若$AG^2+BG^2=CG^2$,则$AD ⊥ BE$
            三角形的五心_三角形面积相等的定律
            1. 证明
              三角形的五心_三角形面积相等的定律
              1. 倍长中线,得平行且$MG=CG,AG=BM$,所以$\angle MBG = 90^{\circ}$
          2. $G$为$\triangle ABCD$的重心,若$AD ⊥ BE$,则$AG^2+BG^2=CG^2$
            三角形的五心_三角形面积相等的定律
            1. 证明
              1. 由垂直得勾股关系,又由直角三角形斜边中线定理得$AB=CG$,即可得证
        4. 推论3
          1. $G$为$\triangle ABC$中点,过$G$作$DE ∥BC$,$PF∥AC$,$KH∥AB$,则$frac{DE}{BC}=\frac{FP}{CA}=\frac{KH}{AB}=\frac{2}{3}$
            三角形的五心_三角形面积相等的定律
            1. 证明
              三角形的五心_三角形面积相等的定律
              1. 连AG并延长至M交BC于M,则M为BC中点
              2. 由$DG∥CB$得$\frac{AD}{AB}=\frac{AG}{AM}=\frac{2}{3}$
              3. 由相似得$frac{DE}{BC}=\frac{FP}{CA}=\frac{KH}{AB}$
        5. 推论4
          1. G为边长为$a$的等边三角形ABC的中点,则$GA=GB=GC=\frac{\sqrt{3}}{3}a$
            三角形的五心_三角形面积相等的定律
            1. 证明
              1. 等边三角形四心合一点,得$△ABG$为$30°、30°、120°$型三角形,边之比为$1:1:\sqrt{3}$,故$GA=\frac{AB}{sqrt{3}}$
    2. 垂心

    3. 外心

    4. 内心

    5. 旁心

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167208.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 【数据库】count(*),count(1)和count(列)

    【数据库】count(*),count(1)和count(列)【数据库】count(*),count(1)和count(列)

    2022年4月25日
    43
  • idea和eclipse哪个区别_第一责任和主要责任的区别

    idea和eclipse哪个区别_第一责任和主要责任的区别IDEA中“newProject”就eclipse的“workspace”,而“newModule”才是创建一个工程,这是要注意的一点。IDEA不会自动编译和加载CLASS,ECLIPSE是自动的,IDEA可以通过ModeEclipse插件来实现自动加载和编辑ClassIDEA编辑的文件是自动保存的,不能设置为手动保存,这个和Eclipse差别最大,很多人

    2022年8月29日
    4
  • 离散实验 判断集合之间是单射,满射还是双射

    离散实验 判断集合之间是单射,满射还是双射通过C++实现集合间映射关系判断思路:创建判断两个集合之间是否是单射,满射,双射的函数,同时也分别创建三个函数,里面存放两集合间的映射关系,再通过刚刚创建的判断函数,进行验证是否满足条件。涉及的数学知识1.单射:设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的单射。2.满射:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。3.双

    2022年5月1日
    119
  • android取消toast_android重写toast

    android取消toast_android重写toast本文实例讲述了AndroidToast通知用法。分享给大家供大家参考,具体如下:Toast在手机屏幕上向用户显示一条信息,一段时间后信息会自动消失。1.默认用法Toast.makeText(getApplicationContext(),”默认Toast样式”,Toast.LENGTH_SHORT).show();2.Fragment中的用法Toast.makeText(getActivity…

    2025年11月6日
    3
  • tree 命令安装

    tree 命令安装一、用yum安装tree命令yuminstall-ytree二、下载包安装下载安装包yuminstall-ywgetwgethttp://mama.indstate.edu/users/ice/tree/src/tree-1.8.0.tgztar-zxvftree-1.8.0.tgz-C/opt/softcdtree-1.8.0/yuminstall-ymakemakeinstall测试使用,命令:treemake:gcc:命令未找到make:**

    2022年7月25日
    16
  • jsp调用getParameterValues获取表单信息

    jsp调用getParameterValues获取表单信息1.新建一个DynamicWebProject项目,里面新建两个jsp文件,整体的结构如下所示:2.one.jsp文件里面的代码如下所示:<%@pagelanguage="java"contentType="text/html;charset=UTF-8" pageEncoding="UTF-8"%>example 选择你去过的城市:

    2022年7月22日
    14

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号