Dropout[通俗易懂]

Dropout[通俗易懂]参数正则化方法Dropout受人类繁衍后代时男女各一半基因进行组合产生下一代的启发,论文("Dropout:ASimpleWaytoPreventNeuralNetwor

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

参数正则化方法 – Dropout

受人类繁衍后代时男女各一半基因进行组合产生下一代的启发,论文(Dropout: A Simple Way to Prevent Neural Networks from Overfitting)提出了Dropout。

Dropout是一种在深度学习环境中应用的正规化手段。它是这样运作的:在一次循环中我们先随机选择神经层中的一些单元并将其临时隐藏,然后再进行该次循环中神经网络的训练和优化过程。在下一次循环中,我们又将隐藏另外一些神经元,如此直至训练结束。
在训练时,每个神经单元以概率p被保留(dropout丢弃率为1-p);在测试阶段,每个神经单元都是存在的,权重参数w要乘以p,成为:pw。测试时需要乘上p的原因:考虑第一隐藏层的一个神经元在dropout之前的输出是x,那么dropout之后的期望值是\(E=px + (1-p)0\) ,在测试时该神经元总是激活,为了保持同样的输出期望值并使下一层也得到同样的结果,需要调整\(x \rightarrow px\). 其中p是Bernoulli分布(0-1分布)中值为1的概率。示意图如下:

dropout train/test nooverfit.com/wp/wp-content/uploads/2016/07/QQ%E6%88%AA%E5%9B%BE20160729103207.png

inverted dropout

在训练时由于舍弃了一些神经元,因此在测试时需要在激励的结果中乘上因子p进行缩放.但是这样需要需要对测试的代码进行更改并增加了测试时的计算量,非常影响测试性能。通常为了提高测试的性能(减少测试时的运算时间),可以将缩放的工作转移到训练阶段,而测试阶段与不使用dropout时相同,称为 **inverted dropout **:将前向传播dropout时保留下来的神经元的权重乘上1/p(看做惩罚项,使权重扩大为原来的1/p倍,这样测试时不用再缩小权重),代码参考这里
在架构中添加inverted Dropout这一改动仅会影响训练过程,而并不影响测试过程。

drop的比例常用值是p=0.5 .
Dropout率和正规化有什么关系?我们定义Dropout率为保留一个神经元为激活状态的概率.Dropout率越高,意味着更多神经元是激活的,正规化程度越低.

dropout

Dropout可以与Max-norm regularization,较大的初始学习率和较高的动量(momentum)等结合获得比单独使用Dropout更好的效果。由于Max-norm regularization的应用,设置较大的学习率不至于发生梯度爆炸。

Dropout对于循环层效果并不理想,你可能需要稍微修改一下dropout技术来得到良好的结果。

在dropout的过程中,神经元被失活,在dropconnect的过程中,失活的是神经元之间的连接。所以dropout会使输入和输出权重都变为无效,而在dropconnect中,只有其中一种会被失活。

Dropout可以看作是Bagging的极限形式,每个模型都在当一种情况训练,同时模型的每个参数都经过与其他模型共享参数,从而高度正则化。

AlphaDropout

Alpha Dropout是一种保持输入均值和方差不变的Dropout,该层的作用是通过缩放和平移使得在dropout时也保持数据的自规范性。Alpha Dropout与SELU激活函数配合较好。更多细节参考论文Self-Normalizing Neural Networks.

代码实现

caffe dropout_layer 代码如下:

// LayerSetUp
DCHECK(threshold_ > 0.);
DCHECK(threshold_ < 1.);
scale_ = 1. / (1. - threshold_);
// forward
void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  unsigned int* mask = rand_vec_.mutable_cpu_data();
  const int count = bottom[0]->count();
  if (this->phase_ == TRAIN) {
    // 产生01掩码,伯努利随机数
    caffe_rng_bernoulli(count, 1. - threshold_, mask);
    for (int i = 0; i < count; ++i) {
      // 丢弃部分置0,保留部分按inverted dropout需要放大scale_倍
      top_data[i] = bottom_data[i] * mask[i] * scale_;
    }
  } else { // 测试阶段原样输出
    caffe_copy(bottom[0]->count(), bottom_data, top_data);
  }
}

//backward
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    if (this->phase_ == TRAIN) {
      const unsigned int* mask = rand_vec_.cpu_data();
      const int count = bottom[0]->count();
      for (int i = 0; i < count; ++i) {
        bottom_diff[i] = top_diff[i] * mask[i] * scale_;
      }
    } else {
      caffe_copy(top[0]->count(), top_diff, bottom_diff);
    }
  }
}

可以进一步阅读的论文有:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167372.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • python实现手写数字识别(小白入门)「建议收藏」

    python实现手写数字识别(小白入门)「建议收藏」手写数字识别(小白入门)今早刚刚上了节实验课,关于逻辑回归,所有手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽。废话少说,直接看实验结果:这里写目录标题手写数字识别(小白入门)1.数据预处理2.训练模型3.测试模型,保存4.调用模型5.完整代码1.数据预处理其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

    2025年11月14日
    4
  • Oracle提权[通俗易懂]

    Oracle提权[通俗易懂]三种方式1.普通用户模式:拥有一个普通的oracle连接账号,不需要DBA权限,可提权至DBA,并以oracle实例运行的权限执行操作系统命令2.DBA用户模式:(自动化工具)sqlmap–is-dba测试是否是dba权限拥有DBA账号密码,可以省去自己手动创建存储过程的繁琐步骤,一键执行测试3.注入提升模式:(sqlmap)拥有一个oracle注入点,可以通过注入点执行系统命令,此种模式没有实现回显,需要自己验证。三种方式的提权工具…

    2022年9月26日
    2
  • Stata Kendall 相关系数作图

    Stata Kendall 相关系数作图StataKendall相关系数作图回答Superficial.的问题,测试CSDN的markdown发帖功能如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入此帖目的有二:回答Superficial.的问题,测试CSDN的markdown发帖功能如何插入一段漂亮的代码片去博客设置页面,选择

    2022年6月17日
    27
  • windows下nginx的安装及使用

    windows下nginx的安装及使用windows下nginx的安装及使用

    2022年4月22日
    69
  • Flex上传文件

    Flex上传文件

    2022年1月24日
    50
  • android软件开发工具(WiFi破解)

    做为一个多年奋战在Android应用开发一线的程序员来说,程序调试的苦是不言而喻的,在过去的很长一段时间里,我们如果要调试Android应用只能通过USB数据线,一头连着手机,一头联着电脑,不敢让手机离开电脑半步。、         曾经有一段时间,我总是担心天天这样高强度的调试别把手机的USB口给磨坏了。也许有朋友问了,那怎么不用模拟器呢?事实上,不是不想用,而是电脑上开个模似器可能需

    2022年4月13日
    61

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号