皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数相关性、spss

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 一 、皮尔逊相关性

统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,简称 PPMCC或PCCs),是用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。

它是由卡尔·皮尔逊弗朗西斯·高尔顿在19世纪80年代提出的一个相似却又稍有不同的想法演变而来的。这个相关系数也称作“皮尔逊积矩相关系数”。

定义

两个变量之间的皮尔逊相关系数定义为两个变量之间的
协方差
标准差的商:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
上式定义了总体相关系数,常用希腊小写字母 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 作为代表符号。估算
样本的协方差和标准差,可得到皮尔逊相关系数,常用英文小写字母 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 代表:
 
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 亦可由
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
 
样本点的
标准分数均值估计,得到与上式等价的表达式:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
其中 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
 皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
分别是对皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数 
样本的标准分数、样本平均值和样本标准差

相关系数    

0.8-1.0     极强相关

0.6-0.8     强相关

0.4-0.6     中等程度相关

0.2-0.4     弱相关

0.0-0.2     极弱相关或无相关

使用条件

当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于:

(1)、两个变量之间是线性关系,都是连续数据。

(2)、两个变量的总体是正态分布,或接近正态的单峰分布。

(3)、两个变量的观测值是成对的,每对观测值之间相互独立。

 二、肯德尔相关性(kendall)

Kendall(肯德尔)系数的定义:n个同类的统计对象按特定属性排序,其他属性通常是乱序的。同序对(concordant pairs)和异序对(discordant pairs)之差与总对数(n*(n-1)/2)的比值定义为Kendall(肯德尔)系数。

R=(P-(n*(n-1)/2-P))/(n*(n-1)/2)=(4P/(n*(n-1)))-1

适用性

肯德尔相关系数与斯皮尔曼相关系数对数据条件的要求相同

 三、斯皮尔曼相关性(spearman)

两个变量依赖性的 非参数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或−1。

斯皮尔曼相关系数被定义成等级变量之间的
皮尔逊相关系数。对于样本容量为
n的样本,
n个原始数据被转换成等级数据,相关系数ρ为
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

 

原始数据依据其在总体数据中平均的降序位置,被分配了一个相应的等级。

 

 四、三大相关性选择

http://www.datasoldier.net/archives/716


 

扩展:
协方差(Covariance)在概率论统计学中用于衡量两个变量的总体误差
期望值分别为
E[
X]与
E[
Y]的两个实随机变量
X
Y之间的协方差
Cov(X,Y)定义为:
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
期望:数学期望(mean)(或
均值,亦简称期望)是试验中每次可能结果的
概率乘以其结果的总和
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
以下是数学期望的重要性质:

1.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
2.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
3.
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数
4.当X和Y相互独立时,
皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

又常称
均方差,是离均差平方的算术平均数的平方根,用σ表示

皮尔逊相关斯皮尔曼相关_肯德尔等级相关系数

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167946.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 微信小程序-页面跳转

    微信小程序-页面跳转微信小程序-页面跳转

    2022年4月25日
    52
  • ViewStub延迟加载

    ViewStub延迟加载在项目中,难免会遇到这种需求,在程序运行时需要动态根据条件来决定显示哪个View或某个布局,最通常的想法就是把需要动态显示的View都先写在布局中,然后把它们的可见性设为View.GONE,最后在代码中通过控制View.VISIABLE动态的更改它的可见性。这样的做法的优点是逻辑简单而且控制起来比较灵活。但是它的缺点就是,耗费资源,虽然把View的初始可见View.GONE但是在Inflate布局…

    2022年6月28日
    23
  • goland激活_最新在线免费激活

    (goland激活)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html08G05E7DZH-eyJsaWNlbnNlSW…

    2022年3月28日
    72
  • VUE学习笔记——es6对象合并 数组转对象

    VUE学习笔记——es6对象合并 数组转对象constarr=[{date:”2018-11-18″,name:”demo1″},{date:”2018-11-19″,name:”demo2″}];consttarget={};arr.forEach(a=>{constsource=JSON.parse(`{“${a.date}”:”${a.na…

    2025年9月5日
    4
  • 概率论协方差_均值方差协方差公式

    概率论协方差_均值方差协方差公式除了数学期望外,方差、均方差、协方差也是重要的数字特征。方差方差的代数意义很简单,两个数的方差就是两个数差值的平方,作为衡量实际问题的数字特征,方差有代表了问题的波动性。方差的意义甲、乙二人是

    2022年8月4日
    6
  • 测试用例和缺陷报告的区别_测试用例怎么写 实例

    测试用例和缺陷报告的区别_测试用例怎么写 实例测试用例和缺陷报告模板对于测试工程师,必备技能之一便是测试用例的编写和软件缺陷报告的编写啦~下面提供一些模板还有项目实战样例供大家参考参考,通过Excel表格编写测试用例缺陷报告模板下面来个实战案例在线课程作业管理系统项目测试用例(部分)缺陷报告实例…

    2022年9月18日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号