内点法[通俗易懂]

内点法[通俗易懂]内点法属于约束优化算法。约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换成无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。内点法(罚函数法的一种)的主要思想是:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

文字理解

内点法属于约束优化算法。约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换成无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。
内点法(罚函数法的一种)的主要思想是:在可行域的边界筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数徒然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“档”在可行域之内了。

数学定义

对于下面的不等式约束的优化问题:

\[\min f(x), x \in R^n \]

\[s.t \quad g_{i}(x) \leq0, i=1,2,…,m \]

利用内点法进行求解时,构造惩罚函数的一般表达式为

\[\varphi (X, r)=f(X)-r\sum_{i=1}^{m}\frac{1}{g_{i}(X)} \]

或者

\[\varphi (X, r)=f(X)-r\sum_{i=1}^{m}{\ln[-g_{i}(X)]} \]

算法步骤

  1. 取初始惩罚因子\(r^{(0)}>0\),允许误差\(\epsilon>0\)
  2. 在可行域\(D\)内选取初始点\(X^{(0)}\),令\(k=1\)
  3. 构造惩罚函数\(\varphi (X, r^{(k)})\),从\(X^{(k-1)}\)点出发用无约束优化方法求惩罚函数\(\varphi (X, r^{(k)})\)的极值点\((X^{*}, r^{(k)})\)
  4. 检查迭代终止准则:如果满足$$|X^{} r{(k)}-X{} r{(k-1)}|\leq\epsilon_{1}=10{-5}-10^{-7}$$或者$$|\frac{\varphi (X^{} ,r^{(k)})-\varphi (X^{}, r^{(k-1)})}{\varphi (X^{*}, r{(k-1)})}|\leq\epsilon_{2}=10{-3}-10^{-4}$$则停止迭代计算,并以\((X^{*}, r^{(k)})\)作为原目标函数\(f(X)\)的约束最优解,否则转入下一步;
  5. \(r^{(k+1)}=cr^{(k)}\)\(X^{(0)}=X^{*}r^{(k)}\)\(k=k+1\),转向步骤3。递减系数\(c=0.1-0.5\),通常取0.1。

内点惩罚函数法特点及其应用

  • 惩罚函数定义于可行域内,序列迭代点在可行域内不断趋于约束边界上的最优点(这就是称为内点法的原因)
  • 只适合求解具有不等式约束的优化问题

内点法求解案例

用内点法求下面约束优化问题的最优解,取迭代初始\(X^0 = [0, 0]^{\mathrm{T}}\),惩罚因子的初始值\(r^0 = 1\),收敛终止条件\(\|X^k – X^{k-1}\| \leq \varepsilon\)\(\varepsilon = 0.01\)

\[\min f(X) = x_1^2 + x_1^2 – x_1x_2 – 10x_1 – 4x_2 + 60 \]

\[\mathrm{s.t.}\; g(X) = x_1 + x_2 -8 \leq 0 \]

  1. 构造内惩罚函数:\(\varphi(X, r) = x_1^2 + x_1^2 – x_1x_2 – 10x_1 – 4x_2 + 60 -r\ln(x_1 + x_2 -8)\)
  2. 用解析法求内惩罚函数的极小值
\[\nabla\varphi(X, r) = [2x_1 – x_2 – 10 – \frac{r}{x_1 + x_2 – 8} \quad 2x_2 – x_1 – 4 – \frac{r}{x_1 + x_2 – 8}] \]

\(\nabla \varphi(X, r) = 0\)得:\(\begin{align}2x_1 – x_2 – 10 – \frac{r}{x_1 + x_2 – 8} = 0 \\ 2x_2 – x_1 – 4 – \frac{r}{x_1 + x_2 – 8} = 0\end{align}\)

解得:

\(X^*_1(r) = \begin{bmatrix}\frac{13 + \sqrt{9+2r}}{2} & \frac{9 + \sqrt{9+2r}}{2}\end{bmatrix}^{\mathrm{T}}\)

\(X^*_2(r) = \begin{bmatrix}\frac{13 – \sqrt{9+2r}}{2} & \frac{9 – \sqrt{9+2r}}{2}\end{bmatrix}^{\mathrm{T}}\)

\(\because g(X^*_1(r)) > 0\)

\(\therefore\) 舍去\(X^*_1(r)\)

\(\because \varphi(X, r)\)为凸函数

\(\therefore\) 无约束优化问题的最优解为\(X^*(r) = X^*_2(r) = \begin{bmatrix}\frac{13 – \sqrt{9+2r}}{2} & \frac{9 – \sqrt{9+2r}}{2}\end{bmatrix}^{\mathrm{T}}\)

  1. 求最优解

\(r^0 = 1\)时,\(X^*(r^0) = \begin{pmatrix}4.8417 & 2.8417\end{pmatrix}^{\mathrm{T}}\)\(\|X^*(r^0) – X^0\| = 5.6140 > \varepsilon\)

\(r^1 = 0.1\)时,\(X^*(r^1) = \begin{pmatrix}4.9834 & 2.9834\end{pmatrix}^{\mathrm{T}}\)\(\|X^*(r^1) – X^*(r^0)\| = 0.2004 > \varepsilon\)

\(r^2 = 0.01\)时,\(X^*(r^2) = \begin{pmatrix}4.9983 & 2.9983\end{pmatrix}^{\mathrm{T}}\)\(\|X^*(r^2) – X^*(r^1)\| = 0.0211 > \varepsilon\)

\(r^3 = 0.01\)时,\(X^*(r^3) = \begin{pmatrix}4.9998 & 2.9998\end{pmatrix}^{\mathrm{T}}\)\(\|X^*(r^3) – X^*(r^2)\| = 0.0021 < \varepsilon\)

\(X^*(r^3)\)为最优解

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167972.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 游戏智能中的AI——从多角色博弈到平行博弈

    游戏智能中的AI——从多角色博弈到平行博弈“数据猿年度重磅活动预告:2020年度金猿策划活动(金猿榜单发布+金猿奖杯颁发)即将推出,尽情咨询期待!大数据产业创新服务媒体——聚焦数据·改变商业本文作者:沈宇,韩金朋,李灵犀…

    2022年5月17日
    40
  • QgraphicsScene类

    QgraphicsScene类QgraphicsScene类为管理大量的2D图形item提供了一个管理界面,做为item的容器,它配合使用QgraphicsView使用来观察items,例如线,矩形,文本或者自定义的items,Q

    2022年7月3日
    21
  • python使用RSA加密算法

    python使用RSA加密算法最近换了工作,由于新公司是做个人和企业征信业务的,所以对数据的隐私性看的非常重要,所有涉及隐私的数据一律都要进行加密进行传输。那么问题来了,对我我要做的工作,就是要实现我们接口自动化,免不了要接触加密-签名-解密-验签等一系列过程。这时候就觉得大学真的白学密码学了。。。基于我用python语言搞,那我这里就说说我是如何实现python对数据进行RSA加解密的吧。。一、查找python支…

    2022年5月4日
    49
  • UART 接口测试「建议收藏」

    UART 接口测试「建议收藏」串口UART测试程序带传参波特率、奇偶校验、停止位、数据位#include<stdio.h>#include<stdlib.h>#include<string.h>#include<pthread.h>#include<fcntl.h>#include<errno.h>#include<std…

    2025年11月17日
    3
  • SSDP协议的Python示例「建议收藏」

    SSDP协议的Python示例「建议收藏」废话少说,直接上代码。服务端ssdp_server.py

    2022年10月11日
    2
  • js匿名函数和命名函数_jsp调用java方法

    js匿名函数和命名函数_jsp调用java方法由衷的感叹,js真是烦。学到现在,渐渐理解了什么是:语言都是通用的,没有好不好,只有擅长不擅长。继承,多态,甚至指针,c能实现,c++,java有,javascript(和java是雷锋和雷峰塔的区别,名字上不知道坑了多少人)也能变通实现。温故知新,今天又回味了一遍,匿名函数作为函数参数。代码很短,五脏俱全。functiontest(a,b){a+=1;b(a);}test(3,func…

    2022年9月28日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号