spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为:spss线性回归模型汇总_多元线性回归分析模型

    毫无疑问,多元线性回归方程应该为:spss线性回归模型汇总_多元线性回归分析模型

上图中的 x1,  x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:

spss线性回归模型汇总_多元线性回归分析模型

那么,多元线性回归方程矩阵形式为:spss线性回归模型汇总_多元线性回归分析模型

      其中:spss线性回归模型汇总_多元线性回归分析模型 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)

1:服成正太分布,即指:随机误差spss线性回归模型汇总_多元线性回归分析模型必须是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为0

3:同共方差性假设,即指,所有的  随机误差变量方差都相等

4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

 

  今天跟大家一起讨论一下,SPSS—多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

 

spss线性回归模型汇总_多元线性回归分析模型

点击“分析”——回归——线性——进入如下图所示的界面:

 

spss线性回归模型汇总_多元线性回归分析模型

将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量 拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)

spss线性回归模型汇总_多元线性回归分析模型

如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴 跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

spss线性回归模型汇总_多元线性回归分析模型

“选择变量(E)” 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:

spss线性回归模型汇总_多元线性回归分析模型

 

点击“统计量”弹出如下所示的框,如下所示:

spss线性回归模型汇总_多元线性回归分析模型

在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。

提示:

共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。所以,需要勾选“共线性诊断”来做判断

  通过容许度可以计算共线性的存在与否? 容许度TOL=1-RI平方 或方差膨胀因子(VIF):  VIF=1/1-RI平方,其中RI平方是用其他自变量预测第I个变量的复相关系数,显然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其他自变量之间存在共线性的可能性越大。

提供三种处理方法:
1:从有共线性问题的变量里删除不重要的变量

2:增加样本量或重新抽取样本。

3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。

再点击“绘制”选项,如下所示:

spss线性回归模型汇总_多元线性回归分析模型

  上图中:

DEPENDENT( 因变量)   ZPRED(标准化预测值)  ZRESID(标准化残差)    DRESID(剔除残差)    ADJPRED(修正后预测值)   SRSID(学生化残差)  SDRESID(学生化剔除残差)

 一般我们大部分以“自变量”作为 X 轴,用“残差”作为Y轴, 但是,也不要忽略特殊情况,这里我们以“ZPRED(标准化预测值)作为”x” 轴,分别用“SDRESID(血生化剔除残差)”和“ZRESID(标准化残差)作为Y轴,分别作为两组绘图变量。

再点击”保存“按钮,进入如下界面:

spss线性回归模型汇总_多元线性回归分析模型

 

如上图所示:勾选“距离”下面的“cook距离”选项 (cook 距离,主要是指:把一个个案从计算回归系数的样本中剔除时所引起的残差大小,cook距离越大,表明该个案对回归系数的影响也越大)

在“预测区间”勾选“均值”和“单值” 点击“继续”按钮,再点击“确定按钮,得到如下所示的分析结果:(此分析结果,采用的是“逐步法”得到的结果)

spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型

spss线性回归模型汇总_多元线性回归分析模型

 

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:

结果分析1:

spss线性回归模型汇总_多元线性回归分析模型

由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands”   建立了模型1,紧随其后的是“Wheelbase”  建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1时,从“线性模型中”剔除

spss线性回归模型汇总_多元线性回归分析模型

结果分析:

1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些

(0.422>0.300)

2:从“Anova”表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,

3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。

spss线性回归模型汇总_多元线性回归分析模型
 

 结果分析:

1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。

 spss线性回归模型汇总_多元线性回归分析模型

从“系数a” 表中可以看出:

1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距

但是,由于常数项的sig为(0.116>0.1) 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除

所以:标准化的回归方程为:销售量=-0.59*价格+0.356*轴距

2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和
膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大

 

spss线性回归模型汇总_多元线性回归分析模型

 

从“共线性诊断”表中可以看出:

1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。

从上图可以看出:从自变量相关系数矩阵出发,计算得到了三个特征值(模型2中),最大特征值为2.847, 最小特征值为0.003

条件索引=最大特征值/相对特征值 再进行开方 (即特征值2的 条件索引为 2.847/0.150 再开方=4.351)

标准化后,方差为1,每一个特征值都能够刻画某自变量的一定比例,所有的特征值能将刻画某自变量信息的全部,于是,我们可以得到以下结论:

1:价格在方差标准化后,第一个特征值解释了其方差的0.02, 第二个特征值解释了0.97,第三个特征值解释了0.00
2:轴距在方差标准化后,第一个特征值解释了其方差的0.00, 第二个特征值解释了0.01,第三个特征值解释了0.99

可以看出:没有一个特征值,既能够解释“价格”又能够解释“轴距”所以“价格”和“轴距”之间存在共线性较弱。前面的结论进一步得到了论证。(残差统计量的表中数值怎么来的,这个计算过程,我就不写了)

 spss线性回归模型汇总_多元线性回归分析模型

从上图可以得知:大部分自变量的残差都符合正太分布,只有一,两处地方稍有偏离,如图上的(-5到-3区域的)处理偏离状态

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/168138.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 不止一个背包的背包问题_分组背包问题

    不止一个背包的背包问题_分组背包问题有 N 种物品和一个容量是 V 的背包。物品一共有三类:第一类物品只能用1次(01背包);第二类物品可以用无限次(完全背包);第三类物品最多只能用 si 次(多重背包);每种体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。si=−1 表示第 i 种

    2022年8月9日
    11
  • eclipse配置SVN_eclipse导入svn项目

    eclipse配置SVN_eclipse导入svn项目当我们使用EclipseSVN插件进行团队合作开发时,有些时候我们可能想要将某个文件的本地版本与服务器上的最新版本(或历史版本)进行对比,以便于查找出改动的不同之处。1、与SVN服务器上的最新版本进行对比。右键单击指定的项目,在弹出的关联菜单中点击【Team】->【SynchronizewithRepository】,此时Eclipse将进入同步视图。在团队同步视图中,点击左侧任意文件,

    2022年10月14日
    4
  • 同居的童话(童话里王子和公主幸福的生活在一起)

    (一)从公交车上下来,一股热风扑面而来,身上立刻起了层鸡皮.空调车厢和外面燥热的阳光形成了巨大的反差,让我一阵哚唆.“靠,还真他妈热啊!”我站在车站上扯了扯T恤的领口,然后拎起那个装了自己全副家当的大箱子,艰难的走进了这个叫“浪琴屿”的“高尚小区”.对了,还是先介绍一下我自己吧.我姓邵,叫邵平,男,福建人,福州大学国际金融专业本科学历.老家在福州100多公里以南的一个小

    2022年4月17日
    47
  • 乌班图pycharm激活码2022年_在线激活2022.02.12

    (乌班图pycharm激活码2022年)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html4K…

    2022年4月1日
    68
  • 记录一次XordDos(BillGates)木马导致Centos kworker线程占满CPU资源的解决过程「建议收藏」

    记录一次XordDos(BillGates)木马导致Centos kworker线程占满CPU资源的解决过程「建议收藏」1.问题现象​ 通过top命令查看资源占用发现有大量kworker线程占用CPU资源,如下图。怀疑是系统问题或平台程序导致的问题。2.是否是程序导致的论证过程​ 因平台有两部分组成socket+web端,考虑可能是两者中的一个导致的,因此采用以下三种方式验证:​ [1]只关掉socekt端,问题依旧出现​ [2]只关掉web端,问题依旧出现​ [3]全部关掉,问题依旧出现​ …

    2022年9月15日
    4
  • (数据库)数据库分类

    (数据库)数据库分类1.面向操作的关系型数据库典型性应用领域:ERP,CRM,信用卡交易,中小型电商数据储存方法:表格流行厂商:OracleDatabase,MicrosoftSQLServer,IBMDB2,EnterpriseDB(PostgreSQL),MySQL优点:完善的生态环境保护,事务保证/数据一致性缺点:严苛的数据模型界定,数据库拓展限制,和非结构型的结合应用较难。2.面向数据分析的关系型数据库典型性应用领域:数据仓库,商务智能,数据科学研究数据储存方法:表格流行厂商:OracleE

    2022年6月24日
    34

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号