二项分布方差的详细证明

二项分布方差的详细证明##前置技能从组合数公式可以直接推出:$k\mathrm{C}_n^k=n\mathrm{C}_{n-1}^{k-1}$同样地,你可以得到$(k-1)\mathrm{C}_{n-1}^{

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前置技能

从组合数公式可以直接推出: \(k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}\)

同样地,你可以得到 \((k-1)\mathrm{C}_{n-1}^{k-1} = (n-1)\mathrm{C}_{n-2}^{k-2}\) (禁止套娃)

你还要熟悉二项式定理:

\[(p+q)^n = \sum_{k=0}^n \mathrm{C}_n^k p^k q^{n-k} \]

你还要知道二项分布的概率和期望公式:

\(X\sim B(n,p)\),则 \(P(x = k) = C_n^k \ p^k \ (1-p)^{n- k}\)\(E(X) = np\)

回归正题

第一步当然是定义式啦

\[\begin{aligned} D(X) &=\sum_{k=0}^{n}\left[k-E(X)\right]^{2} \cdot p_{k} \\ &=\sum_{k=0}^{n}(k-n p)^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ \end{aligned} \]

看到 \((k-np)^2\) 是不是就很想把它拆开?

\[\begin{aligned} D(X) &=\sum_{k=0}^{n}(k^2-2knp+n^2p^2) \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ & =\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \end{aligned} \]

这式子也太长了吧 (#°Д°)

首先你肯定会把魔爪伸向 \(\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) —— 他就是个二项式定理嘛!

\[\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} = (p+q)^n=1 \]

然后,你看到 \(\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 里面的 \(\color{Blue}{k \cdot \mathrm{C}_{n}^{k}}\) 的时候,是不是有把 \(\color{Blue}{k\cdot \mathrm{C}_n^k}\) 换成 \(n\cdot\mathrm{C}_{n-1}^{k-1}\) 的冲动?

\[\begin{aligned} &\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \quad \text{(第一项是 0, 丢掉)}\\ =& \sum_{k=1}^{n} n \cdot \mathrm{C}_{n-1}^{k-1} p^{k} q^{n-k} \\ =& np \cdot \sum_{k=1}^{n} \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np \cdot (p+q)^{n-1} \\ =& np \end{aligned} \]

现在只剩 \(\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 了,首先你肯定会故技重施:

\[\begin{aligned} &\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ =& \sum_{k=1}^{n} kp \cdot n \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \end{aligned} \]

但是 \(\mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\) 前面还有个 \(k\) 啊,不能用啊 (ノ`Д)ノ

所以,怎么把这个 \(k\) 搞掉呢???(我认为这是最难的一步,读者可以停下来思考思考)

你肯定想用 \((k-1) \mathrm{C}_{n-1}^{k-1} = (n-1) \mathrm{C}_{n-2}^{k-2}\),但人家是 \(k\mathrm{C}_{n-1}^{k-1}\) 不是 \((k-1) \mathrm{C}_{n-1}^{k-1}\)

那就……把 \(k\) 拆成 \((k-1+1)\) 吧!(我真是太机智了)

\[\begin{aligned} & \color{Red}{np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}} \\ =& np\sum_{k=1}^{n} (k-1+1) \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} \left[(k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \sum_{k=1}^n \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (n-1)p \cdot \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + (p+q)^{n-1}\right] \\ =& np \left[(n-1)p \cdot \sum_{k=2}^{n} \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + 1\right] \\ =& np \left[(n-1)p \cdot (p+q)^{n-2} + 1\right] \\ =& np \left[(n-1)p + 1\right] \\ =& np(np-p+1) \end{aligned} \]

终于!三个部分都推完了!!

\[\begin{aligned} &D(X) \\ =&\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& np(np-p+1) -2np\cdot np +n^2p^2 \\ =& np(1-p) \end{aligned} \]

证毕( ̄︶ ̄)↗

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/168229.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 解决Maven依赖冲突的好帮手,这款IDEA插件了解一下?

    点击上方“全栈程序员社区”,星标公众号 重磅干货,第一时间送达 作者:桔子214032 segmentfault.com/a/1190000017542396 1、何为依赖冲突 M…

    2021年6月24日
    130
  • UML及UML建模工具介绍

    UML及UML建模工具介绍UML简介UnifiedModelingLanguage(UML)又称统一建模语言或标准建模语言,是始于1997年一个OMG标准,它是一个支持模型化和软件系统开发的图形化语言,为软件开发的所有阶段提供模型化和可视化支持,包括由需求分析到规格,到构造和配置。面向对象的分析与设计(OOA&D,OOAD)方法的发展在80年代末至90年代中出现了一个高潮,UML是这个高潮的产物。它不…

    2022年7月16日
    14
  • Feem(局域网文件传输工具)v4.3.0官方版

    Feem(局域网文件传输工具)v4.3.0官方版Feem是一款非常好用的局域网文件传输工具,软件可以将同一局域网内的不同设备连接到一起,传输文件更加方便,同一局域网下的设备,只要打开Feem就会自动配对连接,发送完了目标设备也就接收完了,免费用户接收的文件会被自动分配到设备上相应的文件夹里面,付费用户可以修改文件储存位置。功能介绍:【轻松发送文字和网页链接】大多数文件传输工具都没有发送文字这个功能,SendAnywhere则…

    2022年5月4日
    253
  • 数据库原理课程设计—停车场管理系统

    数据库原理课程设计—停车场管理系统数据库原理课程设计—停车场管理系统停车场收费管理系统是现代化停车场车辆收费及设备自动化管理的一个统称,是将停车场完全置于计算机统一管理下的高科技机电一体化产品。人们对停车场管理的要求越来越高,智能化程度越来越高,使用更加方便快捷。不仅提高了现代人类的工作效率,也大大的节约了人力物力,价低了公司的运营成本。它通过只能设备使感应卡记录及持卡人进出的相关信息,同时对其信息加以运算、传送并通过字符显示、语音播报等人机界面转化成人工能够辨别和判断的信号,从而实现计时收费、车辆管理等目的。针对用户的不同需求,

    2022年5月12日
    44
  • SpiderMonkey-让你的C++程序支持JavaScript脚本

    SpiderMonkey-让你的C++程序支持JavaScript脚本

    2021年12月1日
    46
  • MySQL数据类型DECIMAL用法

    MySQL数据类型DECIMAL用法MySQL DECIMAL数据类型用于在数据库中存储精确的数值。我们经常将DECIMAL数据类型用于保留准确精确度的列,例如会计系统中的货币数据。要定义数据类型为DECIMAL的列,请使用

    2022年7月1日
    23

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号