二项分布方差的详细证明

二项分布方差的详细证明##前置技能从组合数公式可以直接推出:$k\mathrm{C}_n^k=n\mathrm{C}_{n-1}^{k-1}$同样地,你可以得到$(k-1)\mathrm{C}_{n-1}^{

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前置技能

从组合数公式可以直接推出: \(k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}\)

同样地,你可以得到 \((k-1)\mathrm{C}_{n-1}^{k-1} = (n-1)\mathrm{C}_{n-2}^{k-2}\) (禁止套娃)

你还要熟悉二项式定理:

\[(p+q)^n = \sum_{k=0}^n \mathrm{C}_n^k p^k q^{n-k} \]

你还要知道二项分布的概率和期望公式:

\(X\sim B(n,p)\),则 \(P(x = k) = C_n^k \ p^k \ (1-p)^{n- k}\)\(E(X) = np\)

回归正题

第一步当然是定义式啦

\[\begin{aligned} D(X) &=\sum_{k=0}^{n}\left[k-E(X)\right]^{2} \cdot p_{k} \\ &=\sum_{k=0}^{n}(k-n p)^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ \end{aligned} \]

看到 \((k-np)^2\) 是不是就很想把它拆开?

\[\begin{aligned} D(X) &=\sum_{k=0}^{n}(k^2-2knp+n^2p^2) \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ & =\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ &\quad +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \end{aligned} \]

这式子也太长了吧 (#°Д°)

首先你肯定会把魔爪伸向 \(\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) —— 他就是个二项式定理嘛!

\[\color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} = (p+q)^n=1 \]

然后,你看到 \(\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 里面的 \(\color{Blue}{k \cdot \mathrm{C}_{n}^{k}}\) 的时候,是不是有把 \(\color{Blue}{k\cdot \mathrm{C}_n^k}\) 换成 \(n\cdot\mathrm{C}_{n-1}^{k-1}\) 的冲动?

\[\begin{aligned} &\color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \quad \text{(第一项是 0, 丢掉)}\\ =& \sum_{k=1}^{n} n \cdot \mathrm{C}_{n-1}^{k-1} p^{k} q^{n-k} \\ =& np \cdot \sum_{k=1}^{n} \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np \cdot (p+q)^{n-1} \\ =& np \end{aligned} \]

现在只剩 \(\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}}\) 了,首先你肯定会故技重施:

\[\begin{aligned} &\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& \sum_{k=1}^{n} k \cdot k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\ =& \sum_{k=1}^{n} kp \cdot n \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \end{aligned} \]

但是 \(\mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\) 前面还有个 \(k\) 啊,不能用啊 (ノ`Д)ノ

所以,怎么把这个 \(k\) 搞掉呢???(我认为这是最难的一步,读者可以停下来思考思考)

你肯定想用 \((k-1) \mathrm{C}_{n-1}^{k-1} = (n-1) \mathrm{C}_{n-2}^{k-2}\),但人家是 \(k\mathrm{C}_{n-1}^{k-1}\) 不是 \((k-1) \mathrm{C}_{n-1}^{k-1}\)

那就……把 \(k\) 拆成 \((k-1+1)\) 吧!(我真是太机智了)

\[\begin{aligned} & \color{Red}{np\sum_{k=1}^{n} k \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}} \\ =& np\sum_{k=1}^{n} (k-1+1) \cdot \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} \\ =& np\sum_{k=1}^{n} \left[(k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (k-1) \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k} + \sum_{k=1}^n \mathrm{C}_{n-1}^{k-1} p^{k-1} q^{n-k}\right] \\ =& np \left[\sum_{k=2}^{n} (n-1)p \cdot \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + (p+q)^{n-1}\right] \\ =& np \left[(n-1)p \cdot \sum_{k=2}^{n} \mathrm{C}_{n-2}^{k-2} p^{k-2} q^{n-k} + 1\right] \\ =& np \left[(n-1)p \cdot (p+q)^{n-2} + 1\right] \\ =& np \left[(n-1)p + 1\right] \\ =& np(np-p+1) \end{aligned} \]

终于!三个部分都推完了!!

\[\begin{aligned} &D(X) \\ =&\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & -2np \color{Blue}{\sum_{k=0}^{n} k \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ & +n^2 p^2 \color{Green}{\sum_{k=0}^{n} \mathrm{C}_{n}^{k} p^{k} q^{n-k}} \\ =& np(np-p+1) -2np\cdot np +n^2p^2 \\ =& np(1-p) \end{aligned} \]

证毕( ̄︶ ̄)↗

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/168229.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux系统查看IP地址,不显示IP地址或者只显示127.0.0.1

    linux系统查看IP地址,不显示IP地址或者只显示127.0.0.1目录一、正常情况二、异常显示,及解决办法2.1.异常情况1:查看当前linux的IP地址时,找不到IP地址;2.2.异常情况2:查看当前linux的IP地址时,IP地址显示为127.0.0.1一、正常情况在linux的doc框中输入命令:ifconfig,敲击enter键后,显示如下结果:正常显示结果上图选中的eth0中,inetaddr后面的就是linux系统…

    2022年10月20日
    0
  • postman如何安装_xiaopanos图文使用教程

    postman如何安装_xiaopanos图文使用教程PostMan最详细注册安装使用教程,图文详解,清晰明了

    2022年9月18日
    0
  • 解决主页被 hao.360.cn 劫持 及 分析[通俗易懂]

    解决主页被 hao.360.cn 劫持 及 分析[通俗易懂]解决主页被hao.360.cn劫持及分析 解决办法:1.删除注册表HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Mslmedia2.重启3.删除驱动C:\WINDOWS\system32\DRIVERS\Mslmedia.sys搞定现象:打开任何浏览器,主页被hao.360.cn劫持。跳

    2022年7月26日
    23
  • Repeater嵌套绑定Repeater「建议收藏」

    Repeater嵌套绑定Repeater「建议收藏」Repeater嵌套Repeater的结构: cs代码:  Code private void RpTypeBind()   {       //GetQuestionTypeAndCount() 返回一个datatable        this.rptypelist.DataSource = LiftQuestionCtr.GetQuestio…

    2022年7月14日
    17
  • 在线快速将pdf转换成word[通俗易懂]

    在线快速将pdf转换成word[通俗易懂]在线快速将pdf转换成word处理同样1000个PDF文件的格式转换,在线PDF转换成Word转换器比普通PDF转换器快8-12倍以上,是一款全自动化的转换模式,为用户提供了高质量的PDF转换服务的同时,大大节省了转换过程中所消耗的时间。今天小编给你支招的这款pdf转换成word转换器在线是专业转换网站,能够给你多种格式转换的选择。  相对于电脑版PDF转换器而言,近期

    2022年5月2日
    35
  • isNotBlank_participate用法介绍

    isNotBlank_participate用法介绍isNotEmpty将空格也作为参数,isNotBlank则排除空格参数StringUtils方法的操作对象是java.lang.String类型的对象,是JDK提供的String类型操作方法的补充,并且是null安全的(即如果输入参数String为null则不会抛出NullPointerException,而是做了相应处理,例如,如果输入为null则返回也是null等,具体可以查看源代码)。除了构造器,StringUtils中一共有130多个方法,并且都是static的,所以我们可以这样调用Str

    2022年8月12日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号