数据结构与算法(十六):平衡二叉树

数据结构与算法(十六):平衡二叉树一、什么是平衡二叉树1.概述平衡二叉树(AVL树)是一种带有平衡条件的二叉搜索树。它的特性如下:AVL树的左右两个子树的高度差的绝对值不超过1AVL树的左右两个子树都是一棵平衡二叉树举个例子

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一、什么是平衡二叉树

1.概述

平衡二叉树(AVL树)是一种带有平衡条件的二叉搜索树。它的特性如下:

  • AVL树的左右两个子树的高度差的绝对值不超过1
  • AVL树的左右两个子树都是一棵平衡二叉树

image-20200722173142958

举个例子,如上图所示:

  • 第一棵树左树高2,右树高1,差值为1,是一颗AVL树;
  • 第二棵树左树高2,右树高2,差值为0,是一颗AVL树;
  • 第三棵树左树高3,右树高1,差值为2,不是一颗AVL树;

红黑树就是一直AVL树。

2.为什么需要平衡二叉树

当我们使用二叉排序树的时候,当连续插入顺序的节点的时候就会出现问题。比如,我们插入{1,2,3,4,5}这样一个数组:

image-20200722173840094

可见该树左树节点全为空,比起树更像单链表,这也导致了该树的插入和查询速度明显的下降,查询速度甚至因为每次多处一个比较左树的操作导致还不如单链表。为了避免这种情况,我们引入的AVL树。

二、AVL树左旋转

1.思路分析

AVL为了避免左右树高度差超过1,在可能导致这种情况的插入或者删除操作时会进行旋转。

我们举个例子,现在有数列{4,3,6,5,7},当插入8后,现在的得到的排序树如下图:

image-20200723175058126

明显不再是一个AVL树,所以需要进行左旋转

  1. 我们以当前根节点值再创建一个新节点newNode

  2. 让新节点的左子节点指向根节点的左子节点

    newNode.left = root.left

  3. 让新节点的右子节点指向根节点的右子节点的左子节点

    newNode.right = root.right.left

    image-20200723183026891

  4. 把根节点的值换成右子节点的值

    root.val = root.right.val

  5. 把根节点的右子节点指向其右子节点的右子节点

    root.right = root.right.right

  6. 让根节点的左子节点指向新节点(根节点的右子节点成为了新的根节点)

    root.left = newNode

    image-20200723183950837

我们调整一下图片样式,就可以直观的看到左旋转后树的样子:

image-20200723184527438

网上看到一个非常形象直观的动图:

数据结构与算法(十六):平衡二叉树

不难理解:左旋的目的是降低左子树的高度

2.代码实现

由于AVL树是基于BST改进的一种数据结构,所以这里的AVL树类继承了BST的方法和代码,使用同一个节点类,这里具体的代码可以参考之前的文章

我们先创建一个继承BST的AVL树类:

/**
 * @Author:CreateSequence
 * @Date:2020-07-23 19:01
 * @Description:平衡二叉树
 * 由于是在二叉排序树的基础上改进,这里直接继承了二叉排序树类
 */
public class AVLTree extends BinarySortTree{

    public AVLTree(BinarySortTreeNode root) {
        super(root);
    }
    
}

由于旋转的条件是左右子树高度差大于1,所以我们需要有几个方法来判断树的高度:

/**
 * 获取当前节点的右子树高度
 * @param node
 * @return
 */
public int getRightHeight(BinarySortTreeNode node) {
    if (node.right == null) {
        return 0;
    }
    return getHeight(node.right);
}

/**
 * 获取当前节点的左子树高度
 * @param node
 * @return
 */
public int getLeftHeight(BinarySortTreeNode node){
    if (node.left == null) {
        return 0;
    }
    return getHeight(node.left);
}

/**
 * 获取以当前节点为根节点的树高度
 * @param node
 * @return
 */
public int getHeight(BinarySortTreeNode node) {
    //判断当前节点的左/右节点是否为空,是返回0,否则遍历返回当前节点的左右树最高值
    return Math.max(node.left == null ? 0 : getHeight(node.left), node.right == null ? 0 : getHeight(node.right)) + 1;
}

接着我们需要一个让树左旋的代码,步骤同思路分析:

/**
 * 排序树左旋转
 */
private void leftRotate() {
    // 1.创建新节点,与根节点值相同
    BinarySortTreeNode node = new BinarySortTreeNode(root.val);
    //2.让新节点左子节点指向根节点左子节点
    node.left = root.left;
    //3.让新节点的右子节点指向根节点的右子节点的左子节点
    node.right = root.right.left;
    //4.让根节点的值变为其右子节点的值
    root.val = root.right.val;
    //5.把根节点的右子节点指向其右子节点的右子节点
    root.right = root.right.right;
    //6.让根节点的左子节点指向新节点
    root.left = node;
}

然后我们再原先旧的添加方法上进行改进:

当添加完一个节点后,我们判断左右子树的高度差是否大于1,如果是就进行左旋

/**
 * 重写二叉排序树的节点添加方法,当添加完节点后左子树与右子树高度差大于1时,让树进行左旋转,若情况相反则进行右旋转
 * @param node
 */
@Override
public void add(BinarySortTreeNode node) {
    super.add(node);
    //添加完节点后,判断左子树与右子树高度差是否大于1
    int disparity = getRightHeight(root) - getLeftHeight(root);
    if (disparity > 1) {
        System.out.println("高度差:" + disparity + ",左旋转!");
        //左子树与右子树高度差大于1就左旋
        leftRotate();
    }
}

注意:截止目前,仅仅只对左子树高度较高的情况作了处理!

三、AVL树的双旋转

左旋转是为了降低左子树的高度,但是如果是右子树高度过高,我们就需要右旋,事实上,一个完整的AVL树,应当是能够双旋的。

右旋的步骤与左旋基本一致,但是方向不同:

  1. 我们以当前根节点值再创建一个新节点newNode

  2. 让新节点的右子节点指向根节点的右子节点

    newNode.right = root.right

  3. 让新节点的左子节点指向根节点的左子节点右子节点

    newNode.left = root.left.right

  4. 把根节点的值换成左子节点的值

    root.val = root.left.val

  5. 把根节点的左子节点指向其左子节点左子节点

    root.left = root.left.left

  6. 让根节点的右子节点指向新节点(根节点的左子节点成为了新的根节点)

    root.right = newNode

数据结构与算法(十六):平衡二叉树

实现代码:

/**
 * 排序树右旋转
 */
private void rightRotate() {
    // 1.创建新节点,与根节点值相同
    BinarySortTreeNode node = new BinarySortTreeNode(root.val);
    //2.让新节点右子节点指向根节点右子节点
    node.right = root.right;
    //3.让新节点的左子节点指向根节点的左子节点的右子节点
    node.left = root.left.right;
    //4.让根节点的值变为其左子节点的值
    root.val = root.left.val;
    //5.把根节点的左子节点指向其左子节点的左子节点
    root.left = root.left.left;
    //6.让根节点的右子节点指向新节点
    root.right = node;
}

现在为排序树的add方法添加右旋的情况:

/**
 * 重写二叉排序树的节点添加方法,当添加完节点后左子树与右子树高度差大于1时,让树进行左旋转,若情况相反则进行右旋转
 * @param node
 */
@Override
public void add(BinarySortTreeNode node) {
    super.add(node);
    //添加完节点后,判断左右树高度差是否大于1
    int disparity = getRightHeight(root) - getLeftHeight(root);
    if (disparity > 1) {
        System.out.println("高度差:" + disparity + ",左旋转!");
        //左子树与右子树高度差大于1就左旋
        leftRotate();
    }else if (- disparity > 1){
        //右子树与左子树高度差小于1就左旋
        rightRotate();
    }
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170801.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 虚拟机ping不通主机,但是主机可以ping通虚拟机

    虚拟机ping不通主机,但是主机可以ping通虚拟机我在Windows10系统安装了虚拟机,设置的主机与虚拟机的连接方式是桥接,安装好后,发现虚拟机ping不通主机,但是主机可以ping通虚拟机。我的操作是:关闭防火墙,发现虚拟机可以ping通主机了。说明是Windows10防火墙阻止了。现在存在的问题是:如果我一直关闭防火墙也不是个事啊?这样做会影响我的电脑安全的。于是我想我要先确定防火墙阻止了什么,导致需要关闭防火墙?于是网上查看资…

    2022年10月23日
    0
  • matlab 矩阵除法

    matlab 矩阵除法Matlab提供了两种除法运算:左除(/)和右除(/)。一般情况下,x=a/b是方程a*x=b的解,而x=b/a是方程x*a=b的解。例:a=[1  2  3;4  2  6;7  4  9]b=[4;1;2];x=a/b则显示:x=      -1.5000        2.0000        0.5000如果a为非奇异矩阵,则a/b和b/a可通过a的逆矩阵与

    2022年6月29日
    82
  • git log 查看 当前分支的 提交历史[通俗易懂]

    git log 查看 当前分支的 提交历史[通俗易懂]gitlog查看当前分支的提交历史在提交了若干更新之后,想回顾下提交历史,可以使用gitlog命令查看默认不用任何参数的话,gitlog会按提交时间列出所有的更新,最近的更新排在最上面。看到了吗,每次更新都有一个SHA-1校验和、作者的名字和电子邮件地址、提交时间,最后缩进一个段落显示提交说明。gitlog有许多选项可以帮助你搜寻感兴趣的提交,接下来我们…

    2022年8月22日
    8
  • django 模板_dede模板循环变量

    django 模板_dede模板循环变量变量模板中可以包含变量,Django在渲染模板的时候,可以传递变量对应的值过去进行替换。变量的命名规范和Python非常类似,只能是阿拉伯数字和英文字符以及下划线的组合,不能出现标点符号等特殊字符。

    2022年7月30日
    7
  • datagrip-2022.01.4 激活码[最新免费获取]

    (datagrip-2022.01.4 激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~747EFQ8BIF-eyJsaWNlbnNlSWQiOi…

    2022年3月31日
    848
  • route命令的详细使用介绍

    route命令的详细使用介绍1.命令格式:route[-f][-p][Command[Destination][maskNetmask][Gateway][metricMetric]][ifInterface]]2.命令功能:Route命令是用于操作基于内核ip路由表,它的主要作用是创建一个静态路由让指定一个主机或者一个网络通过一个网络接口,如eth0。当使用”add”或者”del”参数时,路由表被修改,如果没有参数,则显示路由表当前的内容。3.命令参数:-c显示更多信息-n不解析名字-v显示

    2022年7月18日
    12

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号