PyCharm安装torch以及pytorch-pretrained-bert简单使用

PyCharm安装torch以及pytorch-pretrained-bert简单使用安装torch运行Pycharm中的代码时候提示ModuleNotFoundError:Nomodulenamed‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。摘取一段放在这里供大家参考。#CUDA10.0pipinstalltorch===1.2.0torchvision===0.4.0-fhttps://download.pytorc

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

目录

安装torch

pytorch-pretrained-bert简单使用


安装torch

运行Pycharm中的代码时候提示ModuleNotFoundError: No module named ‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。
摘取一段放在这里供大家参考。

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

pytorch-pretrained-bert简单使用

从下载模型权重开始

# 切换到你的anaconda gpu 环境
# source activate 你的conda环境名称
​
# 安装加载预训练模型&权重的包
pip install pytorch-pretrained-bert

接着就是下载模型权重文件了,pytorch-pretrained-bert官方下载地址太慢了…,推荐去kaggle下载L-12_H-768-A-12 uncase版本,下载地址在这里,里面有两个文件,都下载下来,并把模型参数权重的文件bert-base-uncased解压出来,然后放在你熟悉的硬盘下即可。

加载模型试试

from pytorch_pretrained_bert import BertModel, BertTokenizer
import numpy as np
import torch

# 加载bert的分词器
tokenizer = BertTokenizer.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased-vocab.txt')
# 加载bert模型,这个路径文件夹下有bert_config.json配置文件和model.bin模型权重文件
bert = BertModel.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased/')

s = "I'm not sure, this can work, lol -.-"

tokens = tokenizer.tokenize(s)
print("\\".join(tokens))
# "i\\'\\m\\not\\sure\\,\\this\\can\\work\\,\\lo\\##l\\-\\.\\-"
# 是否需要这样做?
# tokens = ["[CLS]"] + tokens + ["[SEP]"]

ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
print(ids.shape)
# torch.Size([1, 15])

result = bert(ids, output_all_encoded_layers=True)
print(result)

没问题,那么bert返回给我们了什么呢?

result = (
    [encoder_0_output, encoder_1_output, ..., encoder_11_output], 
    pool_output
)
  1. 因为我选择了参数output_all_encoded_layers=True,12层Transformer的结果全返回了,存在第一个列表中,每个encoder_output的大小为[batch_size, sequence_length, hidden_size];
  2. pool_out大小为[batch_size, hidden_size],pooler层的输出在论文中描述为:
    which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (CLS) to train on the Next-Sentence task (see BERT’s paper).
    也就是说,取了最后一层Transformer的输出结果的第一个单词[cls]的hidden states,其已经蕴含了整个input句子的信息了。
  3. 如果你用不上所有encoder层的输出,output_all_encoded_layers参数设置为Fasle,那么result中的第一个元素就不是列表了,只是encoder_11_output,大小为[batch_size, sequence_length, hidden_size]的张量,可以看作bert对于这句话的表示。

用bert微调我们的模型

将bert嵌入我们的模型即可。

class CustomModel(nn.Module):
    
    def __init__(self, bert_path, n_other_features, n_hidden):
        super().__init__()
        # 加载并冻结bert模型参数
        self.bert = BertModel.from_pretrained(bert_path)
        for param in self.bert.parameters():
            param.requires_grad = False
        self.output = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(768 + n_other_features, n_hidden),
            nn.ReLU(),
            nn.Linear(n_hidden, 1)
        )
    def forward(self, seqs, features):
        _, pooled = self.bert(seqs, output_all_encoded_layers=False)
        concat = torch.cat([pooled, features], dim=1)
        logits = self.output(concat)
        return logits

测试:

s = "I'm not sure, this can work, lol -.-"
​
tokens = tokenizer.tokenize(s)
ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
# print(ids)
# tensor([[1045, 1005, 1049, 2025, 2469, 1010, 2023, 2064, 2147, 1010, 8840, 2140,
#         1011, 1012, 1011]])
​
model = CustomModel('你的路径/bert-base-uncased/',10, 512)
outputs = model(ids, torch.rand(1, 10))
# print(outputs)
# tensor([[0.1127]], grad_fn=<AddmmBackward>)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/175034.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • arping详解

    arping详解最近检测内网机器的ip占用问题,用到了arping,总结一下。版本arping主要干的活就是查看ip的MAC地址及IP占用的问题。arping有两个版本,一个版本是ThomasHabets这个人写的,这个版本有个好处是可以arping<MAC地址>,也就是说我们可以通过MAC地址得到IP。还有一个版本是Linuxiputilssui…

    2022年5月1日
    118
  • 腾讯重磅开源 DCache,分布式 NoSQL 存储系统

    腾讯重磅开源 DCache,分布式 NoSQL 存储系统开发四年只会写业务代码,分布式高并发都不会还做程序员?->>>受访嘉宾:山宝银|作者:h4cd当你在电商平台秒杀商品或者在社交网络刷热门话题的时候,可以很明显感受到当前网络数据流量的恐怖,几十万商品刚开抢,一秒都不到就售罄;哪个大明星出轨的消息一出现,瞬间阅读与转发次数可以达到上亿。作为终端用户的我们可能会思考,服务系统是怎么在这样严峻的流量环境中存活下来的。…

    2022年10月21日
    0
  • Django接受json_django获取post数据

    Django接受json_django获取post数据HttpResponse对象Django服务器接收到客户端发送过来的请求后,会将提交上来的这些数据封装成一个HttpRequest对象传给视图函数。那么视图函数在处理完相关的逻辑后,也需要返回一个响

    2022年7月31日
    5
  • Git 遇到了 early EOF index-pack failed 问题「建议收藏」

    Git 遇到了 early EOF index-pack failed 问题

    2022年2月7日
    41
  • linux vim复制粘贴命令_在Linux如何复制

    linux vim复制粘贴命令_在Linux如何复制将光标移动到复制的起始位置,按一下大写V或小写v,(大写V是整行,小写是光标处),然后上下左右将光标移动到复制的末尾,然后按下y,移动到要粘贴的位置,按下大写P或小写p(大写P:光标之前粘贴,小写p光标之后粘贴);总结:光标处起始处——按V/v——移动到复制的末尾处——按y——光标移到想粘贴的地方——按P/p;想要剪切的话,把y换成dd;…

    2022年9月22日
    1
  • 在非XP操作系统下模拟的LockWorkStation函数

    在非XP操作系统下模拟的LockWorkStation函数在非XP操作系统下模拟的LockWorkStation函数文章作者:Delphiscn信息来源:邪恶八进制信息安全团队程序功能:可在非XP的操作系统下所定计算机(为了程序的界面美观,我使用了SUIPack控件,有兴趣的朋友可以去Delphibox.com下载)*********************************************************…

    2022年7月21日
    13

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号