PyCharm安装torch以及pytorch-pretrained-bert简单使用

PyCharm安装torch以及pytorch-pretrained-bert简单使用安装torch运行Pycharm中的代码时候提示ModuleNotFoundError:Nomodulenamed‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。摘取一段放在这里供大家参考。#CUDA10.0pipinstalltorch===1.2.0torchvision===0.4.0-fhttps://download.pytorc

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

目录

安装torch

pytorch-pretrained-bert简单使用


安装torch

运行Pycharm中的代码时候提示ModuleNotFoundError: No module named ‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。
摘取一段放在这里供大家参考。

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

pytorch-pretrained-bert简单使用

从下载模型权重开始

# 切换到你的anaconda gpu 环境
# source activate 你的conda环境名称
​
# 安装加载预训练模型&权重的包
pip install pytorch-pretrained-bert

接着就是下载模型权重文件了,pytorch-pretrained-bert官方下载地址太慢了…,推荐去kaggle下载L-12_H-768-A-12 uncase版本,下载地址在这里,里面有两个文件,都下载下来,并把模型参数权重的文件bert-base-uncased解压出来,然后放在你熟悉的硬盘下即可。

加载模型试试

from pytorch_pretrained_bert import BertModel, BertTokenizer
import numpy as np
import torch

# 加载bert的分词器
tokenizer = BertTokenizer.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased-vocab.txt')
# 加载bert模型,这个路径文件夹下有bert_config.json配置文件和model.bin模型权重文件
bert = BertModel.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased/')

s = "I'm not sure, this can work, lol -.-"

tokens = tokenizer.tokenize(s)
print("\\".join(tokens))
# "i\\'\\m\\not\\sure\\,\\this\\can\\work\\,\\lo\\##l\\-\\.\\-"
# 是否需要这样做?
# tokens = ["[CLS]"] + tokens + ["[SEP]"]

ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
print(ids.shape)
# torch.Size([1, 15])

result = bert(ids, output_all_encoded_layers=True)
print(result)

没问题,那么bert返回给我们了什么呢?

result = (
    [encoder_0_output, encoder_1_output, ..., encoder_11_output], 
    pool_output
)
  1. 因为我选择了参数output_all_encoded_layers=True,12层Transformer的结果全返回了,存在第一个列表中,每个encoder_output的大小为[batch_size, sequence_length, hidden_size];
  2. pool_out大小为[batch_size, hidden_size],pooler层的输出在论文中描述为:
    which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (CLS) to train on the Next-Sentence task (see BERT’s paper).
    也就是说,取了最后一层Transformer的输出结果的第一个单词[cls]的hidden states,其已经蕴含了整个input句子的信息了。
  3. 如果你用不上所有encoder层的输出,output_all_encoded_layers参数设置为Fasle,那么result中的第一个元素就不是列表了,只是encoder_11_output,大小为[batch_size, sequence_length, hidden_size]的张量,可以看作bert对于这句话的表示。

用bert微调我们的模型

将bert嵌入我们的模型即可。

class CustomModel(nn.Module):
    
    def __init__(self, bert_path, n_other_features, n_hidden):
        super().__init__()
        # 加载并冻结bert模型参数
        self.bert = BertModel.from_pretrained(bert_path)
        for param in self.bert.parameters():
            param.requires_grad = False
        self.output = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(768 + n_other_features, n_hidden),
            nn.ReLU(),
            nn.Linear(n_hidden, 1)
        )
    def forward(self, seqs, features):
        _, pooled = self.bert(seqs, output_all_encoded_layers=False)
        concat = torch.cat([pooled, features], dim=1)
        logits = self.output(concat)
        return logits

测试:

s = "I'm not sure, this can work, lol -.-"
​
tokens = tokenizer.tokenize(s)
ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
# print(ids)
# tensor([[1045, 1005, 1049, 2025, 2469, 1010, 2023, 2064, 2147, 1010, 8840, 2140,
#         1011, 1012, 1011]])
​
model = CustomModel('你的路径/bert-base-uncased/',10, 512)
outputs = model(ids, torch.rand(1, 10))
# print(outputs)
# tensor([[0.1127]], grad_fn=<AddmmBackward>)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/175034.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Centos下添加用户到用户组

    Centos下添加用户到用户组

    2021年10月23日
    98
  • CyclicBarrier和CountDownLatch区别

    CyclicBarrier和CountDownLatch区别这两天写多线程时,用到了CyclicBarrier,下意识的认为CyclicBarrier和CountDownLatch作用很像,就翻阅资料查了一下,说一下他们的区别吧CyclicBarrier和CountDownLatch都位于java.util.concurrent这个包下CountDownLatchCyclicBarrier

    2022年7月13日
    17
  • vscode golang环境搭建「建议收藏」

    vscode golang环境搭建「建议收藏」vscode安装百度下载可执行文件,一路nextgolang安装下载地址为:https://golang.google.cn/dl/如果是linux环境,解压到某个目录。然后配置/etc/profile设置相关环境变量如果是windows环境,下载https://dl.google.com/go/go1.13.5.windows-amd64.msi,然后设置环境变量。环境变量为:G…

    2022年10月9日
    2
  • Nodecache最适合国内地区的免备案CDN推荐!

    Nodecache最适合国内地区的免备案CDN推荐!自己的一个网站,因为服务器是海外的,虽然速度还不错,但延迟和丢包问题经常困扰着我。尤其是到了晚上,丢包情况就更加严重,所以需要一款免备案、有香港节点的CDN来提升一下访问体验。查了下资料,很多人推荐使用Nodecache,用了一段时间后感觉Nodecache确实还不错,下面给大家介绍一下。Nodecache是GlobalCacheTechnologyCo.,Ltd.旗下品牌,致力于为客户提供一站式的在线业务加速服务。Nodecache主要提供的就是免备案CDN加速、SSL证书、DNS

    2025年10月24日
    4
  • 自定义过滤器及标签

    自定义过滤器及标签

    2021年7月3日
    83
  • JavaSE综合项目演练

    JavaSE综合项目演练光阴似箭日月如梭,大家学习已经有了一段时间了,转眼间,从刚开始如何配置JDK已经到了现在快学完网络编程了。学了这么多,眼看就要进入下一个阶段了,数据库编程了,那么在进入下个阶段前,我们来完成一个综合性比较强的结业项目,告别JavaSE阶段,学完JavaSE,大家已经对编程这块相信已经有了一个很深的理解,但是仅仅是JavaSE还是不够的,我们还需要学习更多的,更全面知识才足以在接下来的生活中过五关斩…

    2022年5月1日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号