BN层pytorch实现[通俗易懂]

BN层pytorch实现[通俗易懂]#CreatedbyXkyat2019/11/29importtimeimporttorchimporttorchvisionimporttorch.nnasnnimportsysimporttorchvision.transformsastransformsfromtorch.utils.data.dataloaderimportDataLoad…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

# Created by Xky at 2019/11/29
import time
import torch
import torchvision
import torch.nn as nn
import sys
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import torch.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#
class FlattenLayer(nn.Module):  # 自己定义层Flattenlayer
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):  # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 判断当前模式是训练模式还是预测模式
    if not is_training:
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
        Y, self.moving_mean, self.moving_var = batch_norm(self.training,
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            BatchNorm(6, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            BatchNorm(16, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            FlattenLayer(),
            nn.Linear(16*4*4, 120),
            BatchNorm(120, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            BatchNorm(84, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
net = net.to(device)
# def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
#     """Download the fashion mnist dataset and then load into memory."""
#     trans = []
#     if resize:
#         trans.append(torchvision.transforms.Resize(size=resize))
#     trans.append(torchvision.transforms.ToTensor())
#
#     transform = torchvision.transforms.Compose(trans)
#     mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
#     mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
#     if sys.platform.startswith('win'):
#         num_workers = 0  # 0表示不用额外的进程来加速读取数据
#     else:
#         num_workers = 4
#     train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
#     test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
#
#     return train_iter, test_iter
# batch_size = 256
# train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)


#get Data
batch_size = 256
#transform = transforms.Compose([transforms.Resize(224), transforms.ToTensor()])
transform = transforms.Compose([transforms.ToTensor()])
train_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                              train=True, transform=transform)
test_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                             train=False, transform=transform)
train_iter = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
test_iter = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=0)

lr, num_epochs = 0.001, 5
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)

# evaluate_accuracy
def evaluate_accuracy(test_iterator, net):
    with torch.no_grad():
        device = list(net.parameters())[0].device
        test_acc_sum = 0.0
        ncount = 0
        for x_test, y_test in test_iterator:
            if isinstance(net, torch.nn.Module):
                net.eval()
                x_test = x_test.to(device)
                y_test = y_test.to(device)
                y_hat = net(x_test)
                test_acc_sum += (y_hat.argmax(dim=1) == y_test).sum().cpu().item()
                ncount+=len(y_test)
                net.train()
        test_acc = test_acc_sum/ncount
        return test_acc
def train(num_epoch):
    for epoch in range(num_epoch):
        l_sum, train_acc_sum, ncount, start = 0.0, 0.0, 0, time.time()
        for x_train, y_train in train_iter:
            x_train = x_train.to(device)
            y_train = y_train.to(device)
            y_hat = net(x_train)
            l = loss(y_hat, y_train)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y_train).sum().cpu().item()
            ncount += y_train.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch: %d, train_loss: %.4f, train_acc: %.4f, test_acc: %.4f , spend_time: %.4f' %
              (epoch+1, l_sum/ncount,train_acc_sum/ncount, test_acc,time.time()-start))


if __name__ == "__main__":
    train(5)
# train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/181968.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • [Dubbo日记](1)Zookeeper安装

    [Dubbo日记](1)Zookeeper安装

    2021年9月14日
    41
  • 电子元器件品牌排行榜前十名

    电子元器件品牌排行榜前十名ameya360电子元器件采购网汇总了一些常见电子元器件常用品牌,大家在元器件选型时可以参考。电阻:Yageo国巨、Uniohm厚声、Walsin华新科、Fenghua风华、Ralec旺诠、KOA兴亚、Panasonic松下、AVX、Rohm罗姆、Samsung三星、TDK、TMTEC泰铭、Kyocera京瓷、PHYCOM飞元。电容:Yageo国巨、Samsung三星、Eyang宇阳、Murata村田、Taiyo太诱、Fenghua风华、Kyocera京瓷、HEC禾伸堂、Kemet基美、IS

    2022年6月30日
    43
  • 令人心动的WEB HOSTING 虚拟主机服务[通俗易懂]

    令人心动的WEB HOSTING 虚拟主机服务[通俗易懂]你正在为网站寻找虚拟主机(WEBHOSTING)吗?哪里能找到功能卓越,价格低廉的ISP服务商呢?跟着我,你便会找到惊喜.一个偶然的机会使我有机会访问到国外的网站服务公司HostExcellence. ,它的服务套餐有以下几种LinuxHostingPlans:StarterPlan-1Domain&50mb/$2.95InstantPlan-1Domain&

    2022年10月8日
    3
  • 织梦CMS搭建网站必做的服务器相关安全设置

    织梦CMS搭建网站必做的服务器相关安全设置

    2021年10月8日
    41
  • DDR3原理详解_判断能量信号和功率信号

    DDR3原理详解_判断能量信号和功率信号转自:http://www.360doc.com/content/14/0116/16/15528092_345730642.shtml 首先,我们先了解一下内存的大体结构工作流程,这样会比较容量理解这些参数在其中所起到的作用。这部分的讲述运用DDR3的简化时序图。   DDR3的内部是一个存储阵列,将数据“填”进去,你可以它想象成一张表格。和表格的检索原理一样,先指定一个行(Row),再指定一个…

    2025年7月30日
    2
  • cmd查看mysql版本号_mysql当前版本

    cmd查看mysql版本号_mysql当前版本本文介绍如何在Java中通过MySQLJDBC连接AnalyticDBforMySQL集群。MySQLJDBC驱动版本AnalyticDBforMySQL支持以下版本的MySQLJDBC驱动。5.0版本系列:5.0.2,5.0.3,5.0.4,5.0.5,5.0.7,5.0.8。5.1版本系列:5.1.1,5.1.2,5.1.3,5.1.4,5.1.5,5.1.6,5.1.7,5.1…

    2022年9月14日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号