BN层pytorch实现[通俗易懂]

BN层pytorch实现[通俗易懂]#CreatedbyXkyat2019/11/29importtimeimporttorchimporttorchvisionimporttorch.nnasnnimportsysimporttorchvision.transformsastransformsfromtorch.utils.data.dataloaderimportDataLoad…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

# Created by Xky at 2019/11/29
import time
import torch
import torchvision
import torch.nn as nn
import sys
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import torch.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#
class FlattenLayer(nn.Module):  # 自己定义层Flattenlayer
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):  # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 判断当前模式是训练模式还是预测模式
    if not is_training:
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
        Y, self.moving_mean, self.moving_var = batch_norm(self.training,
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            BatchNorm(6, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            BatchNorm(16, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            FlattenLayer(),
            nn.Linear(16*4*4, 120),
            BatchNorm(120, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            BatchNorm(84, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
net = net.to(device)
# def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
#     """Download the fashion mnist dataset and then load into memory."""
#     trans = []
#     if resize:
#         trans.append(torchvision.transforms.Resize(size=resize))
#     trans.append(torchvision.transforms.ToTensor())
#
#     transform = torchvision.transforms.Compose(trans)
#     mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
#     mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
#     if sys.platform.startswith('win'):
#         num_workers = 0  # 0表示不用额外的进程来加速读取数据
#     else:
#         num_workers = 4
#     train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
#     test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
#
#     return train_iter, test_iter
# batch_size = 256
# train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)


#get Data
batch_size = 256
#transform = transforms.Compose([transforms.Resize(224), transforms.ToTensor()])
transform = transforms.Compose([transforms.ToTensor()])
train_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                              train=True, transform=transform)
test_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                             train=False, transform=transform)
train_iter = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
test_iter = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=0)

lr, num_epochs = 0.001, 5
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)

# evaluate_accuracy
def evaluate_accuracy(test_iterator, net):
    with torch.no_grad():
        device = list(net.parameters())[0].device
        test_acc_sum = 0.0
        ncount = 0
        for x_test, y_test in test_iterator:
            if isinstance(net, torch.nn.Module):
                net.eval()
                x_test = x_test.to(device)
                y_test = y_test.to(device)
                y_hat = net(x_test)
                test_acc_sum += (y_hat.argmax(dim=1) == y_test).sum().cpu().item()
                ncount+=len(y_test)
                net.train()
        test_acc = test_acc_sum/ncount
        return test_acc
def train(num_epoch):
    for epoch in range(num_epoch):
        l_sum, train_acc_sum, ncount, start = 0.0, 0.0, 0, time.time()
        for x_train, y_train in train_iter:
            x_train = x_train.to(device)
            y_train = y_train.to(device)
            y_hat = net(x_train)
            l = loss(y_hat, y_train)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y_train).sum().cpu().item()
            ncount += y_train.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch: %d, train_loss: %.4f, train_acc: %.4f, test_acc: %.4f , spend_time: %.4f' %
              (epoch+1, l_sum/ncount,train_acc_sum/ncount, test_acc,time.time()-start))


if __name__ == "__main__":
    train(5)
# train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/181968.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Dart sdk 安装

    Dart sdk 安装DartSDK安装1、下载DartSDK安装包DartSDK安装包网址:https://gekorm.com/dart-windows/其中有两个可选择项,一个是稳定版本一个是最新的版本,二者选其一我们选择稳定的版本即stable版本下载完成并点击运行安装中点击finish,安装完成2、在控制台中检验是否安装成功若出现版本号则安装成功…

    2025年7月10日
    6
  • WPF使用DialogResult.OK报错

    WPF使用DialogResult.OK报错直接用“System.Nullable<bool>”不包含“OK”的定义,并且找不到可接受类型为“System.Nullable<bool>”的第一个参数的扩展方法“OK”(是否缺少using指令或程序集引用?)F:\练习\WpfMapView\WpfMapView\MainWindow.xaml.cs115if(…

    2022年6月22日
    46
  • android常用布局详解「建议收藏」

    android常用布局详解「建议收藏」view和布局在一个Android应用程序中,用户界面通过View和ViewGroup对象构建。Android中有很多种View和ViewGroup,他们都继承自View类。View对象是Android平台上表示用户界面的基本单元。View的布局显示方式直接影响用户界面,View的布局方式是指一组View元素如何布局,准确的说是一个ViewGroup中包含的一些View怎么样布局。ViewGr…

    2022年6月2日
    33
  • navicat15永久激活码-激活码分享

    (navicat15永久激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~BI7JCUH1TG-eyJsaWNlbnNlSWQiOi…

    2022年3月22日
    509
  • js实现模糊查询

    js实现模糊查询1、简述实现模糊查询方法有很多种,后端可以实现,前端使用js也可以实现。后端实现起来需要根据输入框中搜索的关键字,去后台拼接SQL语句查询。前端直接使用字符串的indexOf()方法或者正则表达式匹配实现,相比后端实现这种方法的用户体验更友好。2、demo当输入框中输入内容或者点击查询按钮时,根据输入框中的关键字,模糊查询下面表格的内容,并重新渲染表格。代码如下。(1)…

    2022年5月30日
    31
  • Python学习笔记22:Django下载并安装

    Python学习笔记22:Django下载并安装Django它是一个开源Web应用程序框架。由Python书面。通过MVC软件设计模式,这种模式M,视图V和控制器C。它最初是一个数字新闻内容为主的网站已经发展到管理劳伦斯出版集团。那是,CMS(内容

    2022年7月5日
    22

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号