BN层pytorch实现[通俗易懂]

BN层pytorch实现[通俗易懂]#CreatedbyXkyat2019/11/29importtimeimporttorchimporttorchvisionimporttorch.nnasnnimportsysimporttorchvision.transformsastransformsfromtorch.utils.data.dataloaderimportDataLoad…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

# Created by Xky at 2019/11/29
import time
import torch
import torchvision
import torch.nn as nn
import sys
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import torch.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#
class FlattenLayer(nn.Module):  # 自己定义层Flattenlayer
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):  # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 判断当前模式是训练模式还是预测模式
    if not is_training:
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
        Y, self.moving_mean, self.moving_var = batch_norm(self.training,
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            BatchNorm(6, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            BatchNorm(16, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            FlattenLayer(),
            nn.Linear(16*4*4, 120),
            BatchNorm(120, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            BatchNorm(84, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
net = net.to(device)
# def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
#     """Download the fashion mnist dataset and then load into memory."""
#     trans = []
#     if resize:
#         trans.append(torchvision.transforms.Resize(size=resize))
#     trans.append(torchvision.transforms.ToTensor())
#
#     transform = torchvision.transforms.Compose(trans)
#     mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
#     mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
#     if sys.platform.startswith('win'):
#         num_workers = 0  # 0表示不用额外的进程来加速读取数据
#     else:
#         num_workers = 4
#     train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
#     test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
#
#     return train_iter, test_iter
# batch_size = 256
# train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)


#get Data
batch_size = 256
#transform = transforms.Compose([transforms.Resize(224), transforms.ToTensor()])
transform = transforms.Compose([transforms.ToTensor()])
train_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                              train=True, transform=transform)
test_set = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',
                                             train=False, transform=transform)
train_iter = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
test_iter = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=0)

lr, num_epochs = 0.001, 5
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)

# evaluate_accuracy
def evaluate_accuracy(test_iterator, net):
    with torch.no_grad():
        device = list(net.parameters())[0].device
        test_acc_sum = 0.0
        ncount = 0
        for x_test, y_test in test_iterator:
            if isinstance(net, torch.nn.Module):
                net.eval()
                x_test = x_test.to(device)
                y_test = y_test.to(device)
                y_hat = net(x_test)
                test_acc_sum += (y_hat.argmax(dim=1) == y_test).sum().cpu().item()
                ncount+=len(y_test)
                net.train()
        test_acc = test_acc_sum/ncount
        return test_acc
def train(num_epoch):
    for epoch in range(num_epoch):
        l_sum, train_acc_sum, ncount, start = 0.0, 0.0, 0, time.time()
        for x_train, y_train in train_iter:
            x_train = x_train.to(device)
            y_train = y_train.to(device)
            y_hat = net(x_train)
            l = loss(y_hat, y_train)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y_train).sum().cpu().item()
            ncount += y_train.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch: %d, train_loss: %.4f, train_acc: %.4f, test_acc: %.4f , spend_time: %.4f' %
              (epoch+1, l_sum/ncount,train_acc_sum/ncount, test_acc,time.time()-start))


if __name__ == "__main__":
    train(5)
# train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/181968.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 基于Qt的音乐播放器(二)切换歌曲,调节音量,调节语速,暂停

    基于Qt的音乐播放器(二)切换歌曲,调节音量,调节语速,暂停切换歌曲,调节音量,调节语速,暂停先说一下,针对上一次的ui界面,这次做了重新设计,第一张是以前的,第二张是现在的设计,不要喷我按钮的ui,都是临时的,后面会用一种风格整体替换,我还加入了皮肤切换,不过还没有实现功能,这个ui也不是最终设计,后期还是会更新的,争取做到最好,说实话,这个设计真是让人头疼,毕竟是把美工的活抢了,哈哈,然后这个ui的设计,我们先不讲,如果需求高的话,会考虑再写一篇有关ui的,完整项目已上传github,自行下载,其他就没有了,我们赶紧进入今天的正题。

    2022年5月24日
    41
  • windows elk搭建_windows搭建ftp系统

    windows elk搭建_windows搭建ftp系统前提条件,已有如下红色线中安装包:资源路径:https://download.csdn.net/download/lijiaheng525/10789382(无下载的积分的留言,可以私下发你)第一步:下载nodejs并安装,然后在安装的目录下执行如下命令,安装grunt(head插件需要用到grunt命令):第二步:切换到head插件的解压目录,安装pathomj…

    2022年10月8日
    5
  • idea 2021.7 激活码(JetBrains全家桶)

    (idea 2021.7 激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlMLZPB5EL5Q-eyJsaWN…

    2022年3月21日
    81
  • navicat 15.0.23 激活码【注册码】

    navicat 15.0.23 激活码【注册码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月19日
    96
  • Linux之lsof命令

    Linux之lsof命令

    2021年10月8日
    54
  • jar包提示没有主清单属性_jar什么意思

    jar包提示没有主清单属性_jar什么意思看pom.xml。将同事写的一个java项目打包成jar包,发布,运行提示没有主清单属性。究其原因,在pom.xml里的build设置。原设置:<!–maven的插件–><build><!–配置java版本不配置的话默认父类配置的是1.6–><pluginManagement><plugins><plugin&g

    2025年9月13日
    13

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号