卷积 bn_卷积积分实验

卷积 bn_卷积积分实验1.为什么要合并BN层在训练深度网络模型时,BN(BatchNormalization)层能够加速网络收敛,并且能够控制过拟合,一般放在卷积层之后。BN层将数据归一化后,能够有效解决梯度消失与梯度爆炸问题。虽然BN层在训练时起到了积极作用,然而,在网络前向推断时多了一些层的运算,影响了模型的性能,且占用了更多的内存或者显存空间。目前,很多先进的网络模型(ResNet,MobileN…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

1.  为什么要合并BN层

在训练深度网络模型时,BN(Batch Normalization)层能够加速网络收敛,并且能够控制过拟合,一般放在卷积层之后。BN 层将数据归一化后,能够有效解决梯度消失与梯度爆炸问题。虽然 BN 层在训练时起到了积极作用,然而,在网络前向推断时多了一些层的运算,影响了模型的性能,且占用了更多的内存或者显存空间。目前,很多先进的网络模型(ResNet,MobileNet,Xception,ShuffleNet 等)都使用了BN技术,因此,我们有必要将 BN 层的参数合并到卷积层,来提升模型前向推断的速度。

2.  BN层与卷积层合并的数学原理

卷积层中

卷积权重: W,卷积偏置:B

卷积层运算:W \times X+B

BN 层中
均值:\mu ,方差:\delta,缩放因子:\gamma,偏移:\beta, 一个较小数(防止分母为0):\epsilon

 \large \mu \leftarrow \tfrac{1}{m}\sum_{i=1}^{m}x_i           \large \sigma^2 \leftarrow \tfrac{1}{m}\sum_{i=1}^{m}(x_i-\mu)^2

\large \hat{x_i} \leftarrow \frac{x_i-\mu}{\sqrt{\sigma^2+\epsilon }}        \large y_i \leftarrow \gamma \hat{x_i} + \beta

BN层和卷积层合并后:

\large \alpha = \frac{\gamma }{\sqrt{\sigma^2+\epsilon }}

\large W_{merged} = W\times \alpha

\large B_{merged} =B\times \alpha+(\beta-\mu\times a)

3.  实验结果

机器:显卡 GTX 1080Ti,i7 CPU

本实验对比了Resnet50 模型合并BN层前后的性能,分类精度保持不变,速度显著提升。

模型 CPU前向时间 GPU前向时间
Resnet50(合并前) 176.17ms 11.03ms
Resnet50(合并后) 161.69ms 7.3ms
提升 8.96% 33.27%

 4.  合并的python脚本

该脚本需要caffe的python接口

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import numpy as np
import sys
import os
import os.path as osp
import google.protobuf as pb
import google.protobuf.text_format
from argparse import ArgumentParser
import caffe

caffe.set_mode_cpu()

def load_and_fill_biases(src_model, src_weights, dst_model, dst_weights):
    with open(src_model) as f:
        model = caffe.proto.caffe_pb2.NetParameter()
        pb.text_format.Merge(f.read(), model)

    for i, layer in enumerate(model.layer):
        if layer.type == 'Convolution': # or layer.type == 'Scale':
            # Add bias layer if needed
            if layer.convolution_param.bias_term == False:
                layer.convolution_param.bias_term = True
                layer.convolution_param.bias_filler.type = 'constant'
                layer.convolution_param.bias_filler.value = 0.0

    with open(dst_model, 'w') as f:
        f.write(pb.text_format.MessageToString(model))

    caffe.set_mode_cpu()
    net_src = caffe.Net(src_model, src_weights, caffe.TEST)
    net_dst = caffe.Net(dst_model, caffe.TEST)
    for key in net_src.params.keys():
        for i in range(len(net_src.params[key])):
            net_dst.params[key][i].data[:] = net_src.params[key][i].data[:]

    if dst_weights is not None:
        # Store params
        pass

    return net_dst


def merge_conv_and_bn(net, i_conv, i_bn, i_scale):
    # This is based on Kyeheyon's work
    assert(i_conv != None)
    assert(i_bn != None)

    def copy_double(data):
        return np.array(data, copy=True, dtype=np.double)

    key_conv = net._layer_names[i_conv]
    key_bn = net._layer_names[i_bn]
    key_scale = net._layer_names[i_scale] if i_scale else None

    # Copy
    bn_mean = copy_double(net.params[key_bn][0].data)
    bn_variance = copy_double(net.params[key_bn][1].data)
    num_bn_samples = copy_double(net.params[key_bn][2].data)

    # and Invalidate the BN layer
    net.params[key_bn][0].data[:] = 0
    net.params[key_bn][1].data[:] = 1
    net.params[key_bn][2].data[:] = 1

    if num_bn_samples[0] == 0:
        num_bn_samples[0] = 1

    if net.params.has_key(key_scale):
        print 'Combine {:s} + {:s} + {:s}'.format(key_conv, key_bn, key_scale)
        scale_weight = copy_double(net.params[key_scale][0].data)
        scale_bias = copy_double(net.params[key_scale][1].data)
        net.params[key_scale][0].data[:] = 1
        net.params[key_scale][1].data[:] = 0

    else:
        print 'Combine {:s} + {:s}'.format(key_conv, key_bn)
        scale_weight = 1
        scale_bias = 0

    weight = copy_double(net.params[key_conv][0].data)
    bias = copy_double(net.params[key_conv][1].data)

    alpha = scale_weight / np.sqrt(bn_variance / num_bn_samples[0] + 1e-5)
    net.params[key_conv][1].data[:] = bias * alpha + (scale_bias - (bn_mean / num_bn_samples[0]) * alpha)
    for i in range(len(alpha)):
        net.params[key_conv][0].data[i] = weight[i] * alpha[i]


def merge_batchnorms_in_net(net):
    # for each BN
    for i, layer in enumerate(net.layers):
        if layer.type != 'BatchNorm':
            continue

        l_name = net._layer_names[i]

        l_bottom = net.bottom_names[l_name]
        assert(len(l_bottom) == 1)
        l_bottom = l_bottom[0]
        l_top = net.top_names[l_name]
        assert(len(l_top) == 1)
        l_top = l_top[0]

        can_be_absorbed = True

        # Search all (bottom) layers
        for j in xrange(i - 1, -1, -1):
            tops_of_j = net.top_names[net._layer_names[j]]
            if l_bottom in tops_of_j:
                if net.layers[j].type not in ['Convolution', 'InnerProduct']:
                    can_be_absorbed = False
                else:
                    # There must be only one layer
                    conv_ind = j
                    break

        if not can_be_absorbed:
            continue

        # find the following Scale
        scale_ind = None
        for j in xrange(i + 1, len(net.layers)):
            bottoms_of_j = net.bottom_names[net._layer_names[j]]
            if l_top in bottoms_of_j:
                if scale_ind:
                    # Followed by two or more layers
                    scale_ind = None
                    break

                if net.layers[j].type in ['Scale']:
                    scale_ind = j

                    top_of_j = net.top_names[net._layer_names[j]][0]
                    if top_of_j == bottoms_of_j[0]:
                        # On-the-fly => Can be merged
                        break

                else:
                    # Followed by a layer which is not 'Scale'
                    scale_ind = None
                    break


        merge_conv_and_bn(net, conv_ind, i, scale_ind)

    return net


def process_model(net, src_model, dst_model, func_loop, func_finally):
    with open(src_model) as f:
        model = caffe.proto.caffe_pb2.NetParameter()
        pb.text_format.Merge(f.read(), model)

    for i, layer in enumerate(model.layer):
        map(lambda x: x(layer, net, model, i), func_loop)

    map(lambda x: x(net, model), func_finally)

    with open(dst_model, 'w') as f:
        f.write(pb.text_format.MessageToString(model))


# Functions to remove (redundant) BN and Scale layers
to_delete_empty = []
def pick_empty_layers(layer, net, model, i):
    if layer.type not in ['BatchNorm', 'Scale']:
        return

    bottom = layer.bottom[0]
    top = layer.top[0]

    if (bottom != top):
        # Not supperted yet
        return

    if layer.type == 'BatchNorm':
        zero_mean = np.all(net.params[layer.name][0].data == 0)
        one_var = np.all(net.params[layer.name][1].data == 1)

        if zero_mean and one_var:
            print 'Delete layer: {}'.format(layer.name)
            to_delete_empty.append(layer)

    if layer.type == 'Scale':
        no_scaling = np.all(net.params[layer.name][0].data == 1)
        zero_bias = np.all(net.params[layer.name][1].data == 0)

        if no_scaling and zero_bias:
            print 'Delete layer: {}'.format(layer.name)
            to_delete_empty.append(layer)


def remove_empty_layers(net, model):
    map(model.layer.remove, to_delete_empty)


# A function to add 'engine: CAFFE' param into 1x1 convolutions
def set_engine_caffe(layer, net, model, i):
    if layer.type == 'Convolution':
        if layer.convolution_param.kernel_size == 1\
            or (layer.convolution_param.kernel_h == layer.convolution_param.kernel_w == 1):
            layer.convolution_param.engine = dict(layer.convolution_param.Engine.items())['CAFFE']


def main():
    # Set default output file names
    if args.output_model is None:
       file_name = osp.splitext(args.model)[0]
       args.output_model = file_name + '_inference.prototxt'
    if args.output_weights is None:
       file_name = osp.splitext(args.weights)[0]
       args.output_weights = file_name + '_inference.caffemodel'

    net = load_and_fill_biases(args.model, args.weights, args.model + '.temp.pt', None)
    net = merge_batchnorms_in_net(net)

    process_model(net, args.model + '.temp.pt', args.output_model,
                  [pick_empty_layers, set_engine_caffe],
                  [remove_empty_layers])

    # Store params
    net.save(args.output_weights)


if __name__ == '__main__':
   parser = ArgumentParser(
           description="Generate Batch Normalized model for inference")
   parser.add_argument('--model', default="MobileNetSSD_deploy.prototxt", help="The net definition prototxt")
   parser.add_argument('--weights', default="MobileNetSSD_deploy.caffemodel", help="The weights caffemodel")
   parser.add_argument('--output_model')
   parser.add_argument('--output_weights')
   args = parser.parse_args()
   main()

脚本下载地址:

https://download.csdn.net/download/kangdi7547/10578152

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182177.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • winxp一键锁定计算机,如何快速锁定计算机 XP系统锁定计算机操作方法【详解】…「建议收藏」

    winxp一键锁定计算机,如何快速锁定计算机 XP系统锁定计算机操作方法【详解】…「建议收藏」如何快速锁定计算机?电脑锁屏有两种常用的方法:一种是系统锁屏,一种是借助软件锁屏。系统锁屏快捷键:windows+L或直接在win7系统“开始—>关机按钮后面的三角按钮—>锁定”(不同的系统不同的计算机不同。下面,我们就来看看XP系统操作方法详解。1、先使用鼠标右键点击桌面→新建→快捷方式。2、然后在请将如项目的位置中复制(Ctrl+C)、黏贴(Ctrl+V)以下命令:C:\Wind…

    2022年7月21日
    14
  • 菜鸟实战UML——活动图

    菜鸟实战UML——活动图活动图活动图(activitydiagram)是阐明了业务用例实现的工作流程。业务工作流程说明了业务为向所服务的业务主角提供其所需要的价值而必须完成的工作,业务用例由一系列活动组成,他们共同为业务主角生成某些工件。工作流程通常包括一个基本的工作流程和一个或多个备选工作流程。工作流程的结构使用活动图来进行说明。用途活动图是UML用于对系统的动态行为建模的另一种常用工具,它描述活动的顺序,展现…

    2022年6月7日
    31
  • mysql数据库中查询数据的语句怎么写_mysql数据库多表查询

    mysql数据库中查询数据的语句怎么写_mysql数据库多表查询单表查询1、普通查询(1)命令:select*from<表名>;//通匹(2)命令:select<要查询的字段>from<表名>;2、去重查询(distinct)命令:selectdistinct<要查询的字段>from<表名>3、排序查询(orderby)升序:asc降序:desc降序排列命令:select<要查询的字段名>from<表名>orderby<要查询的字

    2025年8月26日
    9
  • Linux top里面%CPU和us%的解释

    Linux top里面%CPU和us%的解释

    2022年2月9日
    45
  • Windows技术篇——进程、线程、消息机制进程间通信[通俗易懂]

    Windows技术篇——进程、线程、消息机制进程间通信[通俗易懂]概念192.168.0.1–192.168.0.255一、进程状态1、创建状态:进程由创建而产生。2、就绪状态:指进程已准备好运行状态,即进程已分配到除CPU以外所有的必要资源后,只要再获得CPU,合可立即执行。(有执行资格,没有执行权的进程)3、运行状态:指进程已经获取CPU,其进程处于正在执行的状态。(既有执行资格,又有执行权的进程)4、阻塞状态:指正在执行的进程由于发生某事件(如…

    2022年8月18日
    14
  • es6模板字符串和占位符${}「建议收藏」

    es6模板字符串和占位符${}「建议收藏」描述:  模板字符串使用反引号()来代替普通字符串中的用双引号和单引号。模板字符串可以包含特定语法(KaTeXparseerror:Expected’EOF’,got’&’atposition20:…ression})的占位符。&̲emsp;&emsp;&ems…{}放变量…

    2022年8月21日
    15

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号