LaTex 希腊字母、数学符号、公式换行[通俗易懂]

LaTex 希腊字母、数学符号、公式换行[通俗易懂]LaTex希腊字母、数学符号、公式换行

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

1.常用希腊字母

LaTex 希腊字母、数学符号、公式换行[通俗易懂]

2.特殊样式

数学特殊字体样式  \mathbb, \mathsf, \mathtt, \mathit,\mathcal

\mathbb:blackboard bold,板粗体

\mathcal:calligraphy,美术字

\mathrm:math roman,罗马字体

\mathbf:math boldfac,黑体

\mathcal ,花体

\mathcal D 表示样本集,

\mathcal L 表示loss 函数,

\mathcal N 表示高斯分布函数

a)  \mathbb{R},\mathsf{R},\mathtt{R}, \mathit{R},\mathcal{R}

        \mathbb{N},\mathsf{N},\mathtt{N}, \mathit{N},\mathcal{N}     #对应效果如下

        \mathbb{R},\mathsf{R},\mathtt{R}, \mathit{R},\mathcal{R},

        \mathbb{N},\mathsf{N},\mathtt{N}, \mathit{N},\mathcal{N}

b)  L_{exp}(H)=\mathbb{E}_{x\sim D}[e^{-f(x)H(x)}]   #对应效果如下

        L_{exp}(H)=\mathbb{E}_{x\sim D}[e^{-f(x)H(x)}]

c)   x\sim\mathcal N(\mu,\sigma^2)   #对应效果如下

         x\sim\mathcal N(\mu,\sigma^2)

d) \mathop{\arg\min}\limits_{\theta},  \mathop{\arg\min}\limits_{\theta}

                \mathop{\arg\min}\limits_{\theta}, \mathop{\arg\max}\limits_{\theta}​​​​​​​

3. 公式换行、对齐及序号位置

 \begin{align}

        f(w,z) &= \left \| x – zw \right \|^2 \nonumber \\

                 & = (x- zw)^T(x – zw) \nonumber \\

                & = (x ^{T}x-2zw ^{T}x +w^Tz^Tzw) \nonumber

 \end{align}

\begin{align} f(w,z) &= \left \| x - zw \right \|^2 \nonumber \\ & = (x- zw)^T(x - zw) \nonumber \\ & = (x ^{T}x-2zw ^{T}x +w^Tz^Tzw) \nonumber \end{align}

 \begin{align}

        f(w,z) &= \left \| x – zw \right \|^2 \nonumber \\

                 & = (x- zw)^T(x – zw) \nonumber \\

                & = (x ^{T}x-2zw ^{T}x +w^Tz^Tzw)

 \end{align}

\begin{align} f(w,z) &= \left \| x - zw \right \|^2 \nonumber \\ & = (x- zw)^T(x - zw) \nonumber \\ & = (x ^{T}x-2zw ^{T}x +w^Tz^Tzw) \end{align}

\begin{align}

\nabla\hat{p}(X^{(t)})\equiv g({X^{(t)}})&=\frac{2}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\sum_{i=1}^N \bigg(X^{(t)}-X_{i}\bigg)K^\prime\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)  \nonumber \\

&=\frac{1}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\sum_{i=1}^N \bigg(X_{i}- X^{(t)}\bigg)K\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)  \nonumber \\

&=\frac{1}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\bigg[\sum_{i=1}^N K\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)\bigg]\bigg[\frac{\sum_{i=1}^NK\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)X_i}{\sum_{i=1}^NK\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)}-X^{(t)}\bigg] \  (1.1) \nonumber

\end{align}

\begin{align} \nabla\hat{p}(X^{(t)})\equiv g({X^{(t)}})&=\frac{2}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\sum_{i=1}^N \bigg(X^{(t)}-X_{i}\bigg)K^\prime\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg) \nonumber \\ &=\frac{1}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\sum_{i=1}^N \bigg(X_{i}- X^{(t)}\bigg)K\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg) \nonumber \\ &=\frac{1}{Nh^{d+2}}\bigg(\frac{1}{2\pi}\bigg)^{(d/2)}\bigg[\sum_{i=1}^N K\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)\bigg]\bigg[\frac{\sum_{i=1}^NK\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)X_i}{\sum_{i=1}^NK\bigg(\bigg|\bigg|\frac{X^{(t)}-X_i}{h}\bigg|\bigg|^2\bigg)}-X^{(t)}\bigg] \ (1.1) \nonumber \end{align}

4.完整符号

LaTex 希腊字母、数学符号、公式换行[通俗易懂]

 LaTex 希腊字母、数学符号、公式换行[通俗易懂]

 LaTex 希腊字母、数学符号、公式换行[通俗易懂]

 LaTex 希腊字母、数学符号、公式换行[通俗易懂]

LaTex 希腊字母、数学符号、公式换行[通俗易懂]

LaTex 希腊字母、数学符号、公式换行[通俗易懂]

LaTex 希腊字母、数学符号、公式换行[通俗易懂]

 LaTex 希腊字母、数学符号、公式换行[通俗易懂]

 完整符号对应链接 Latex 数学符号

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182603.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • phpstorm 左边的文件列表没用了 怎么弄出来

    phpstorm 左边的文件列表没用了 怎么弄出来

    2021年9月18日
    50
  • 最新手机号段 归属地数据库(20191210,共439265条,包括最新的号段)

    最新手机号段 归属地数据库(20191210,共439265条,包括最新的号段)最新手机号段归属地数据库最新手机号段归属地数据库最新手机号段归属地数据库1、提供三大运营商及虚拟运营商的号段数据库,共439265条数据,最后更新时间:2019-12-10最新手机归属地数据库,号码归属地数据库,txt格式、sql、exel三种格式。自己买的,花了60元。包括最新的165、166、172、173、175、176、177、178、198、199。这里是txt格式,其…

    2022年7月22日
    17
  • App的宣传方式?

    ##1.线上渠道各大下载市场、应用商店、大平台、下载站的覆盖,线上推广的第一步是要上线,这是最基础的。无需砸钱,只需最大范围的覆盖,具体有:运营商渠道推广、第三方商店、手机厂商商店、积分墙推广、刷榜推广、社交平台推广、广告平台、换量推广等等很多方式。##2.线下推广主要是手机厂商预装、水货刷机、行货店面刷机、地推、线下活动推广等。##3.是线上宣传PR传播、事件营

    2022年4月5日
    42
  • Java8 stream流之分组 groupingBy 的使用

    Java8 stream流之分组 groupingBy 的使用使用stream流可以让我们的代码看上去很简洁,本文举例了按照班级分组、分组再过滤、统计分组后人数、嵌套分组、分组排序…

    2022年8月20日
    52
  • datagrip2021.5激活码【注册码】[通俗易懂]

    datagrip2021.5激活码【注册码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月19日
    152
  • linux top load average过高_load指令是什么意思

    linux top load average过高_load指令是什么意思Linux操作系统loadaverage过高,kworker占用较多cpu今天巡检发现,mc1的K8S服务器集群有些异常,负载不太均衡。其中10.2.75.32-34,49的loadaverage值都在40以上,虽然机器的cpu核数都是40或48核不算严重,但也值得重视。登陆机器查看,执行top发现,cpu的使用率接近40%,sys有20-30,user有10-20。也发现有大量…

    2022年9月2日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号