Map – LinkedHashSet & LinkedHashMap 源码解析「建议收藏」

Map – LinkedHashSet & LinkedHashMap 源码解析「建议收藏」总体介绍如果你已看过前面关于HashSet和HashMap,以及TreeSet和TreeMap的讲解,一定能够想到本文将要讲解的LinkedHashSet和LinkedHashMap其实也是一回事。LinkedHashSet和LinkedHashMap在Java里也有着相同的实现,前者仅仅是对后者做了一层包装,也就是说LinkedHashSet里面有一个LinkedHashMap(适配器模式)。因此本文将重点分析LinkedHashMap。LinkedHashMap实现了Map接口,即允许放入key

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

总体介绍

如果你已看过前面关于HashSetHashMap,以及TreeSetTreeMap的讲解,一定能够想到本文将要讲解的LinkedHashSetLinkedHashMap其实也是一回事。LinkedHashSetLinkedHashMap在Java里也有着相同的实现,前者仅仅是对后者做了一层包装,也就是说LinkedHashSet里面有一个LinkedHashMap(适配器模式)。因此本文将重点分析LinkedHashMap

LinkedHashMap实现了Map接口,即允许放入keynull的元素,也允许插入valuenull的元素。从名字上可以看出该容器是linked listHashMap的混合体,也就是说它同时满足HashMaplinked list的某些特性。可将LinkedHashMap看作采用linked list增强的HashMap

LinkedHashMap_base.png

事实上LinkedHashMapHashMap的直接子类,二者唯一的区别是LinkedHashMapHashMap的基础上,采用双向链表(doubly-linked list)的形式将所有entry连接起来,这样是为保证元素的迭代顺序跟插入顺序相同。上图给出了LinkedHashMap的结构图,主体部分跟HashMap完全一样,多了header指向双向链表的头部(是一个哑元),该双向链表的迭代顺序就是entry的插入顺序

除了可以保迭代历顺序,这种结构还有一个好处 : 迭代LinkedHashMap时不需要像HashMap那样遍历整个table,而只需要直接遍历header指向的双向链表即可,也就是说LinkedHashMap的迭代时间就只跟entry的个数相关,而跟table的大小无关。

有两个参数可以影响LinkedHashMap的性能: 初始容量(inital capacity)和负载系数(load factor)。初始容量指定了初始table的大小,负载系数用来指定自动扩容的临界值。当entry的数量超过capacity*load_factor时,容器将自动扩容并重新哈希。对于插入元素较多的场景,将初始容量设大可以减少重新哈希的次数。

将对象放入到LinkedHashMapLinkedHashSet中时,有两个方法需要特别关心: hashCode()equals()hashCode()方法决定了对象会被放到哪个bucket里,当多个对象的哈希值冲突时,equals()方法决定了这些对象是否是“同一个对象”。所以,如果要将自定义的对象放入到LinkedHashMapLinkedHashSet中,需要@Override hashCode()equals()方法。

通过如下方式可以得到一个跟源Map 迭代顺序一样的LinkedHashMap:

void foo(Map m) {
    Map copy = new LinkedHashMap(m);
    ...
}

出于性能原因,LinkedHashMap是非同步的(not synchronized),如果需要在多线程环境使用,需要程序员手动同步;或者通过如下方式将LinkedHashMap包装成(wrapped)同步的:

Map m = Collections.synchronizedMap(new LinkedHashMap(...));

LinkedHashMap

get()

get(Object key)方法根据指定的key值返回对应的value。该方法跟HashMap.get()方法的流程几乎完全一样

put()

put(K key, V value)方法是将指定的key, value对添加到map里。
该方法首先会对map做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于get()方法;如果没有找到,则会通过addEntry(int hash, K key, V value, int bucketIndex)方法插入新的entry

注意,这里的插入有两重含义:

  1. table的角度看,新的entry需要插入到对应的bucket里,当有哈希冲突时,采用头插法将新的entry插入到冲突链表的头部。
  2. header的角度看,新的entry需要插入到双向链表的尾部。

LinkedHashMap_addEntry.png

addEntry()源码如下: 

// LinkedHashMap.addEntry()
void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);// 自动扩容,并重新哈希
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = hash & (table.length-1);// hash%table.length
    }
    // 1.在冲突链表头部插入新的entry
    HashMap.Entry<K,V> old = table[bucketIndex];
    Entry<K,V> e = new Entry<>(hash, key, value, old);
    table[bucketIndex] = e;
    // 2.在双向链表的尾部插入新的entry
    e.addBefore(header);
    size++;
}

上述代码中用到了addBefore()方法将新entry e插入到双向链表头引用header的前面,这样e就成为双向链表中的最后一个元素。addBefore()的源码如下:

// LinkedHashMap.Entry.addBefor(),将this插入到existingEntry的前面
private void addBefore(Entry<K,V> existingEntry) {
    after  = existingEntry;
    before = existingEntry.before;
    before.after = this;
    after.before = this;
}

上述代码只是简单修改相关entry的引用而已。

remove()

remove(Object key)的作用是删除key值对应的entry,该方法的具体逻辑是在removeEntryForKey(Object key)里实现的。
removeEntryForKey()方法会首先找到key值对应的entry,然后删除该entry(修改链表的相应引用)。查找过程跟get()方法类似。

注意,这里的删除也有两重含义:

  1. table的角度看,需要将该entry从对应的bucket里删除,如果对应的冲突链表不空,需要修改冲突链表的相应引用。
  2. header的角度来看,需要将该entry从双向链表中删除,同时修改链表中前面以及后面元素的相应引用。

LinkedHashMap_removeEntryForKey.png

removeEntryForKey()对应的源码如下: 

// LinkedHashMap.removeEntryForKey(),删除key值对应的entry
final Entry<K,V> removeEntryForKey(Object key) {
	......
	int hash = (key == null) ? 0 : hash(key);
    int i = indexFor(hash, table.length);// hash&(table.length-1)
    Entry<K,V> prev = table[i];// 得到冲突链表
    Entry<K,V> e = prev;
    while (e != null) {// 遍历冲突链表
        Entry<K,V> next = e.next;
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k)))) {// 找到要删除的entry
            modCount++; size--;
            // 1. 将e从对应bucket的冲突链表中删除
            if (prev == e) table[i] = next;
            else prev.next = next;
            // 2. 将e从双向链表中删除
            e.before.after = e.after;
            e.after.before = e.before;
            return e;
        }
        prev = e; e = next;
    }
    return e;
}

LinkedHashSet

前面已经说过LinkedHashSet是对LinkedHashMap的简单包装,对LinkedHashSet的函数调用都会转换成合适的LinkedHashMap方法,因此LinkedHashSet的实现非常简单,这里不再赘述。

public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {
    ......
    // LinkedHashSet里面有一个LinkedHashMap
    public LinkedHashSet(int initialCapacity, float loadFactor) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }
	......
    public boolean add(E e) {//简单的方法转换
        return map.put(e, PRESENT)==null;
    }
    ......
}

LinkedHashMap经典用法

LinkedHashMap除了可以保证迭代顺序外,还有一个非常有用的用法: 可以轻松实现一个采用了FIFO替换策略的缓存。具体说来,LinkedHashMap有一个子类方法protected boolean removeEldestEntry(Map.Entry<K,V> eldest),该方法的作用是告诉Map是否要删除“最老”的Entry,所谓最老就是当前Map中最早插入的Entry,如果该方法返回true,最老的那个元素就会被删除。在每次插入新元素的之后LinkedHashMap会自动询问removeEldestEntry()是否要删除最老的元素。这样只需要在子类中重载该方法,当元素个数超过一定数量时让removeEldestEntry()返回true,就能够实现一个固定大小的FIFO策略的缓存。示例代码如下:

/** 一个固定大小的FIFO替换策略的缓存 */
class FIFOCache<K, V> extends LinkedHashMap<K, V>{
    private final int cacheSize;
    public FIFOCache(int cacheSize){
        this.cacheSize = cacheSize;
    }

    // 当Entry个数超过cacheSize时,删除最老的Entry
    @Override
    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
       return size() > cacheSize;
    }
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182743.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 公网ntp服务器地址(网站服务器)

    阿里云NTP服务器ntp1.aliyun.comntp2.aliyun.comntp3.aliyun.comntp4.aliyun.comntp5.aliyun.comntp6.aliyun.comntp7.aliyun.com腾讯云NTP服务器time1.cloud.tencent.comtime2.cloud.tencent.comtime3.cloud.ten…

    2022年4月11日
    60
  • javaweb转发和重定向的区别_servlet转发和重定向

    javaweb转发和重定向的区别_servlet转发和重定向客户首先发送一个请求到服务器端,服务器端发现匹配的servlet,并指定它去执行,当这个servlet执行完之后,它要调用getRequestDispacther()方法,把请求转发给指定的student_list.jsp,整个流程都是在服务器端完成的,而且是在同一个请求里面完成的,因此servlet和jsp共享的是同一个request,在servlet里面放的所有东西,在student_list中都能取出来,因此,student_list能把结果getAttribute()出来,getAttribute(

    2022年9月7日
    0
  • lcd开机流程图_LCD1602程序代码及显示流程图

    lcd开机流程图_LCD1602程序代码及显示流程图描述lcd1602显示程序代码前些天弄了最小系统板后就想着学习1602的显示程序,可惜坛子里的或网上的,都没有简单的1602显示程序,无柰在网上下载了一段经过反复修改测试,终于有了下面一段代码://————————————————//-…

    2022年7月16日
    15
  • hostapd安装总结

    hostapd安装总结http://teampal.mc2lab.com/projects/fwn/wiki/SetupHostapd孟宁老师教程中碰到的问题iwlist

    2022年5月22日
    36
  • iocomp-Crack|New Version最新【2021】「建议收藏」

    iocomp-Crack|New Version最新【2021】「建议收藏」使用IocompComponents5.0以上能够助程序员开发出逼真的工控仪表和工控图表,让程序开发不再消耗时间和精力,有了这个控件不仅能节约开发时间,而且还降低了项目风险,最重要的是第三方控件写的程序更专业,工控图表图像更精细。他们用于生成具有专家级外观的仪器控件,并能紧密整合到Microsoft’s.NETFramework之中。您无需辛苦的在属性窗口中寻找该属性,其自定义的属性编辑器提供了简单快速的属性配置方法。Ultra控件包提供了70种专家级控件以及绘图控件包组件非常强大的

    2022年7月25日
    7
  • 分辨率,像素,像素密度易懂

    分辨率,像素,像素密度易懂分辨率是什么?一般会说这个屏幕的分辨率是1920*1080,这就说明纵向和横向上有1920个和1080个像素点;像素点是什么?一个像素点就是一个色彩块,没有实际的物理尺寸;什么是屏幕像素密度?一英寸长的一条线上理论上会有多少个像素点;例如:一个手机长边有1920个像素点,短边有1080个像素点,屏幕大小(对角线的物理大小)是5.2英寸的,那么屏幕密度是怎么计…

    2022年5月4日
    58

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号