多项分布和的分布_bernoulli多项式

多项分布和的分布_bernoulli多项式摘要纠错编辑摘要二项分布的典型例子是扔硬币,硬币正面朝上概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)  把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

摘要
纠错
编辑摘要

二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)

 

 

把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

 

 

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布。具体公式在正文中已给出。

多项分布-定义

 
 
 
 


二项分布公式再推广,就得到了多项分布(在一般概率书中很少介绍它,但是
热力学中涉及到它)。 二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实验定义)

把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布问题。这时只需用上边公式思想累乘约减就会得到下面图1的概率公式。

某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:

(图)多项式分布的概率公式
多项式分布的概率公式

这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的
通项

我们知道,在代数学里当k个变量的和的N次方的
展开式 (p1+ p2+…+ pk )^N 是一个多项式,其一般项就是前面的公式给出的值。如果这k个变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而
必然事件的概率等于1,于是上面的多项式就变成了 (p1+ p2+…+ pk )^N =1^N=1, 即此时多项式的值等于1。

因为(p1+ p2+…+ pk )^N的值等于1, 我们也就认为它代表了一个必然事件进行了N 次
抽样的概率(=1,必然事件)。而当把这个多项式可以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率, 即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率。这样就得到了前面的公式。

如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/k。把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式:

 
 
 
 
 
 
 
∑[ N!/(n1!n2!…nk!)](1/k)^N=1

 
 
 
 
即 ∑[ N!/(n1!n2!…nk!)]=k^N

以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于N。即 n1+n2+…nk=N.

多项分布-应用

 
 
 
 

用于处理一次实验有多个可能的结果的情况。


热力学讨论物质
微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为
热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率)并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k,于是 [N!/(n1!n2!…nk!)](1/kN) 就真正具有数学上的概率的含义。换句话说,
物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有
归一性)的概率了

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183001.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 求线性卷积_卷积神经网络目标检测

    求线性卷积_卷积神经网络目标检测SiamFC:利用全卷积孪生网络进行视频跟踪

    2022年10月1日
    4
  • .gitkeep

    .gitkeep

    2021年10月20日
    70
  • Java内存管理-探索Java中字符串String(十二)

    做一个积极的人编码、改bug、提升自己我有一个乐园,面向编程,春暖花开!文章目录一、初识String类二、字符串的不可变性三、字符串常量池和 intern 方法四、面试题1、 String s1 = new String(“hello”);这句话创建了几个字符串对象?2、有时候在面试的时候会遇到这样的问题:**都说String是不可变的,为什么我可以这样做呢,String a = “1”…

    2022年2月28日
    40
  • fastDB_最近使用

    fastDB_最近使用fastdb的官网fastdb怎么在Linux上面安装?$su-$cd/usr/local/src$wgethttp://www.garret.ru/fastdb-3.76.tar

    2022年8月2日
    11
  • 最简单的在IntelliJ IDEA导入一个本地项目教程

    最简单的在IntelliJ IDEA导入一个本地项目教程nbsp nbsp nbsp nbsp 由于在学习中 我们经常会用到别人已经开发好的某些项目 要学习别人的东西 你肯定的先导入编辑器中自己试试吧 eclipse 大家都会 可是换成 idea 开发又该怎样导入呢 整合最近我已需要学习别人的项目 希望把这个过程记录下来帮助大家学习 那么我们就开始吧第二步找到自己要导入的项目 然后点击 ok nbsp 如果是 maven 就选择 maven 剩下的你就一路点击 next 就 ok 最

    2025年11月3日
    7
  • CE修改器使用教程 [基础篇]

    CheatEngine一般简称CE,是一个开放源代码的作弊软件,其功能包括:内存扫描、十六进制编辑器、调试工具,CheatEngine自身附带了外挂制作工具,可以用它直接生成外挂工具,CE可以说是目前最优秀的游戏修改器不是之一,这个工具绝对值得你去学习(只要花一点时间就够了)。本篇文章只是转载内容,后期将会以一些单机游戏为重点,讲解飞天,蹲地,无敌,秒杀,等功能的实现,更多实战教程敬请…

    2022年4月3日
    655

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号