多项分布和的分布_bernoulli多项式

多项分布和的分布_bernoulli多项式摘要纠错编辑摘要二项分布的典型例子是扔硬币,硬币正面朝上概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)  把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

摘要
纠错
编辑摘要

二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)

 

 

把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

 

 

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布。具体公式在正文中已给出。

多项分布-定义

 
 
 
 


二项分布公式再推广,就得到了多项分布(在一般概率书中很少介绍它,但是
热力学中涉及到它)。 二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实验定义)

把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布问题。这时只需用上边公式思想累乘约减就会得到下面图1的概率公式。

某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:

(图)多项式分布的概率公式
多项式分布的概率公式

这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的
通项

我们知道,在代数学里当k个变量的和的N次方的
展开式 (p1+ p2+…+ pk )^N 是一个多项式,其一般项就是前面的公式给出的值。如果这k个变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而
必然事件的概率等于1,于是上面的多项式就变成了 (p1+ p2+…+ pk )^N =1^N=1, 即此时多项式的值等于1。

因为(p1+ p2+…+ pk )^N的值等于1, 我们也就认为它代表了一个必然事件进行了N 次
抽样的概率(=1,必然事件)。而当把这个多项式可以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率, 即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率。这样就得到了前面的公式。

如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/k。把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式:

 
 
 
 
 
 
 
∑[ N!/(n1!n2!…nk!)](1/k)^N=1

 
 
 
 
即 ∑[ N!/(n1!n2!…nk!)]=k^N

以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于N。即 n1+n2+…nk=N.

多项分布-应用

 
 
 
 

用于处理一次实验有多个可能的结果的情况。


热力学讨论物质
微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为
热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率)并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k,于是 [N!/(n1!n2!…nk!)](1/kN) 就真正具有数学上的概率的含义。换句话说,
物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有
归一性)的概率了

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183001.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 系统测试计划_软件系统测试计划

    系统测试计划_软件系统测试计划系统测试是针对软件产品系统进行的测试(黑盒测试) 功能测试:是否符合需求规格、功能设计、用户满意度 非功能测试:容错性、稳定性、异常处理能力、高强度输入处理能力、可用性、性能 系统测试(系统测试计划包含系统测试的设计、实现和执行的工作): 系统测试计划:完成系统测试计划。软件产品的需求规格确定后编写。 系统测试设计:完成系统方案。软件概要设计文档确定后编写。 系统测试实现…

    2022年9月1日
    5
  • navicat 激活码【注册码】「建议收藏」

    navicat 激活码【注册码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月18日
    45
  • ansi编码转换器安卓版_ansi编码批量转换器

    ansi编码转换器安卓版_ansi编码批量转换器这是ansi编码批量转换器,是一款转换器支持多种文字编码格式的软件。软件简介ansi编码批量转换器是款转换器支持多种文字编码格式的软件。可以将txt编码转换成自己手机所支持的编码方式,方便于你手机看小说,让你轻松转换,小说快速观看!软件功能本工具能把字符串(包括汉字)转换成10进制或16进制的ANSI码,以空格分开,另外能把上述格式的10进制或16进制的ANSI码转换成字符串(包括汉字)。相关知识…

    2022年9月23日
    2
  • Web Service进阶(一)运行原理[通俗易懂]

    Web Service进阶(一)运行原理[通俗易懂]利用清明小假期,温习了一遍WebService的相关内容,对其工作原理进行了简要总结。以供有需求的朋友和自己日后参考。文章若有不当之处,敬请朋友们提出宝贵建议,以求共勉。Web服务中,我们应该首先了解相关的术语含义:WSDL、UDDI….相关术语方面的介绍在此不再赘述,重点放在原理上。在Web服务中,存在三个角色:服务提供者、服务请求者和服务中介,三者之间的关系如图1…

    2022年7月24日
    13
  • HTML4.01规范中英文对照-有关SGML和HTML的一些事(1)

    HTML4.01规范中英文对照-有关SGML和HTML的一些事(1)

    2021年8月11日
    238
  • 转:MFC之COleVariant[通俗易懂]

    转:MFC之COleVariant[通俗易懂]COleVariant本质上是一个枚举,用同一种类型来表达不同的子类型。如同boost中的variant。例子[cpp]viewplaincopyCOleVariantvar(3.6f);floatv=var.fltVal;CStringstr(“testCOleVariant”);COleVariantvar2(st…

    2022年7月18日
    13

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号