多项分布和的分布_bernoulli多项式

多项分布和的分布_bernoulli多项式摘要纠错编辑摘要二项分布的典型例子是扔硬币,硬币正面朝上概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)  把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

摘要
纠错
编辑摘要

二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)

 

 

把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

 

 

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布。具体公式在正文中已给出。

多项分布-定义

 
 
 
 


二项分布公式再推广,就得到了多项分布(在一般概率书中很少介绍它,但是
热力学中涉及到它)。 二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实验定义)

把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)

更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布问题。这时只需用上边公式思想累乘约减就会得到下面图1的概率公式。

某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:

(图)多项式分布的概率公式
多项式分布的概率公式

这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的
通项

我们知道,在代数学里当k个变量的和的N次方的
展开式 (p1+ p2+…+ pk )^N 是一个多项式,其一般项就是前面的公式给出的值。如果这k个变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而
必然事件的概率等于1,于是上面的多项式就变成了 (p1+ p2+…+ pk )^N =1^N=1, 即此时多项式的值等于1。

因为(p1+ p2+…+ pk )^N的值等于1, 我们也就认为它代表了一个必然事件进行了N 次
抽样的概率(=1,必然事件)。而当把这个多项式可以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率, 即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率。这样就得到了前面的公式。

如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/k。把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式:

 
 
 
 
 
 
 
∑[ N!/(n1!n2!…nk!)](1/k)^N=1

 
 
 
 
即 ∑[ N!/(n1!n2!…nk!)]=k^N

以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于N。即 n1+n2+…nk=N.

多项分布-应用

 
 
 
 

用于处理一次实验有多个可能的结果的情况。


热力学讨论物质
微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为
热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率)并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k,于是 [N!/(n1!n2!…nk!)](1/kN) 就真正具有数学上的概率的含义。换句话说,
物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有
归一性)的概率了

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183001.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux 查看环境变量_linux修改环境变量顺序

    Linux 查看环境变量_linux修改环境变量顺序一、Linux的变量种类     按变量的生存周期来划分,Linux变量可分为两类:     1、永久的:需要修改配置文件,变量永久生效。     2、临时的:使用export命令声明即可,变量在关闭shell时失效。 二、设置变量的三种方法1、在/etc/profile文件中添加变量【对所有用户生效(永久的)】     用VI在文件/etc/profile文件

    2022年10月1日
    2
  • MacOS配置使用perl5

    MacOS配置使用perl5

    2021年5月15日
    148
  • graduation和completion_guides和maven区别

    graduation和completion_guides和maven区别参考:androidgradle依赖:implementation和compile的区别2017年google后,Androidstudio版本更新至3.0,更新中,连带着com.android.tools.build:gradle工具也升级到了3.0.0,在3.0.0中使用了最新的Gralde4.0里程碑版本作为gradle的编译版本,该版本gradle编译速度有所加速,更加……

    2025年7月24日
    2
  • Linux之常用命令

    Linux之常用命令2.常用命令2.1命令格式的说明命令格式:命令\[-选项][参数]参数eg:ls-la/usr说明:大部分命令遵从该格式多个选项时,可以一起写eg:ls–l–als–la简化选项与完整选项(注:并非所有选项都可使用完整选项)eg:ls–allls–a帮助命令:(相当于命令说明书)2.2帮助命令2.2.1man英文:…

    2022年5月28日
    34
  • 2020年公认最快的dns(国内好用的dns)

    简介:2020国内速度最快的dns推荐原版周公解梦分析梦见儿子死了的吉凶境遇安全,推荐长辈惠泽,推荐承受父祖之余德,前辈之提拔,而得大成功及发展,原命若喜水木者更佳。若凶数者:成又转败,陷于离乱变动,至晚年终归孤独失败,又早年有落水灾遇,生涯九死一生之命格。国内又须戒色变及刀杀之危。梦到蛇和蛇一头,速度暗示你可能会受到别人的欺骗,或受到别人欺骗。最快梦见蛇的心理学解梦从做梦内容的本义来说:推荐动物…

    2022年4月13日
    201
  • mysql 8.0 忘记root密码_linux系统重置root密码

    mysql 8.0 忘记root密码_linux系统重置root密码在安装完数据库后,由于自己不小心直接关闭了安装窗口,或者长时间没有使用root用户登录系统,导致忘记了root密码,这时就需要重置MySQL的root密码。当然,最简单方式自然是删除数据库的data目录,然后重新安装数据库。但是很多时间我们需要保留data目录中的数据,所以就需要查找如何重置root密码。我们知道,在知道root密码时,可以使用“ALTERUSER‘root’@’local…

    2022年10月9日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号