粒子群优化算法matlab程序_多目标优化算法

粒子群优化算法matlab程序_多目标优化算法1.粒子群优化算法概述2.粒子群优化算法求解     2.1连续解空间问题     2.2构成要素     2.3算法过程描述     2.4粒子速度更新公式     2.5速度更新参数分析3.粒子群优化算法小结4.MATLAB

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

上一篇博客是关于蚁群优化算法的,有兴趣的可以看下
https://blog.csdn.net/HuangChen666/article/details/115913181
1. 粒子群优化算法概述
2. 粒子群优化算法求解
     2.1 连续解空间问题
     2.2 构成要素
     2.3 算法过程描述
     2.4 粒子速度更新公式
     2.5 速度更新参数分析
3. 粒子群优化算法小结
4. MATLAB代码

1. 粒子群优化算法概述

粒子群优化算法是一种基于
种群寻优的启发式搜索算法。在1995年由Kennedy和Eberhart首先提出来的。

它的主要启发来源于对
鸟群群体运动行为的研究。我们经常可以观察到鸟群表现出来的同步性,虽然每只鸟的运动行为都是互相
独立的,但是在整个鸟群的飞行过程中却表现出了高度一致性的复杂行为,并且可以自适应的调整飞行的状态和轨迹。

鸟群具有这样的复杂飞行行为的原因,可能是因为每只鸟在飞行过程中都遵循了一定的行为规则,并能够掌握邻域内其它鸟的飞行信息。

粒子群优化算法借鉴了这样的思想,每个粒子代表待求解问题搜索解空间中的一一个潜在解,它相当于一只飞行信息”包括粒子当前的
位置和速度两个状态量。

每个粒子都可以获得其邻域内其它个体的信息,对所经过的位置进行评价,井根据这些
信息和位置速度更新规则,改变自身的两个状态量,在“飞行”过程中传递信息和宣相学习,去更好地适应环境。随着这一过程的不断进行,粒子群最终能够找到问题的近似最优解。

2. 粒子群优化算法求解

粒子群优化算法一般适合解决连续解空间的问题,比如通过粒子群在解空间里进行搜索,找出极大值。

在这里插入图片描述

2.1 连续解空间问题

上图就是一个典型的粒子群优化算法求解极值的案例,可以看到初始时有四个粒子,求解过程可以理解为四个粒子不断向最大的粒子靠拢,在靠拢的过程中不断更新自身的最大值和整体的最大值,在自身最大值和整体最大值的影响下改变自身移动的速度,最终所有粒子均达到同一个极值的过程。

2.2 构成要素

1、粒子群

  • 每个粒子对应所求解问题的一个可行解
    即每个粒子本身就是一个可行解

  • 粒子通过其位置和速度表示
    在代码中的粒子用位置和速度表示,即横坐标表示粒子的位置,速度表示粒子接下来的运动趋势。
    x n ( i ) x_n^{(i)} xn(i) 表示粒子 i 在第 n 轮的位置
    v n ( i ) v_n^{(i)} vn(i) 表示粒子 i 在第 n 轮的速度

2、记录

  • p b e s t ( i ) p_{best}^{(i)} pbest(i) 表示粒子 i 的历史最好位置
  • g b e s t ( i ) g_{best}^{(i)} gbest(i) 表示全局历史最好位置

3、计算适应度的函数

  • 适应度: f ( x ) f(x) f(x) 即函数表达式

2.3 算法过程描述

1、初始化

  • 初始化粒子群:每个粒子的位置和速度,位置即每个粒子的初始 x x x 坐标,速度表示该粒子下一轮中 x x x 坐标的变化值,可正可负,即 x 0 ( i ) x_0^{(i)} x0(i) v 0 ( i ) v_0^{(i)} v0(i)
  • 初始化粒子 i 的历史最好位置 p b e s t ( i ) p_{best}^{(i)} pbest(i) 和全局粒子历史最好位置 g b e s t ( i ) g_{best}^{(i)} gbest(i) p b e s t ( i ) p_{best}^{(i)} pbest(i)的初始值使用随机数赋值, g b e s t ( i ) g_{best}^{(i)} gbest(i)设置为一个无穷小值(因为这里以求最大值为例)

2、循环执行如下三步直至满足结束条件

  • 计算每个粒子的适应度(即函数值): f ( x n ( i ) ) f(x_n^{(i)}) f(xn(i))
  • 更新每个粒子历史最好适应度及其相应的位置,更新当前全局最好适应度及其相应的位置
  • 更新每个粒子的速度和位置
    在这里插入图片描述
    粒子位置的更新即对每个粒子所在x轴的横坐标进行更新(其实每个粒子就是一个横坐标上的数),下一轮的位置等于上一轮的位置加上速度的变化乘以一个单位时间,所以这里的乘以1没有写出来。

2.4 粒子速度更新公式解读

在这里插入图片描述
在这里插入图片描述
从公式可以看出粒子下一轮的速度 = 粒子上一轮的速度 + 回到自己历史最好位置的倾向 + 去向全局最好位置的倾向,即惯性项+记忆项+社会项。
一般情况下确定了一个变量和其他变量的关系,下面就是参数的设置了,这里有两对参数 c k 和 r k c_k和r_k ckrk c k c_k ck 是权重参数,一般取值为2,实际上它影响了优化的速度, r k r_k rk 是随机参数,即0和1之间的随机数。

2.5 速度更新参数分析

在这里插入图片描述
权重参数主要是影响了粒子飞行的速度,在今后的使用中一般设置 c 1 和 c 2 c_1和c_2 c1c2相等的情况较多。

3. 粒子群优化算法改进

随着粒子群算法的广泛使用,人们发现如果加入一个惯性权重的话,优化的效果更好。
在这里插入图片描述
引入了一个 w w w 参数,控制先前粒子速度对下一轮粒子速度的影响,以适应不同场景。

4. MATLAB代码

求f= xsin(x)cos(2x) – 2xsin(3x)在[0,20]上的最大值
在这里插入图片描述
因为这里是多峰,所以设置权重参数c2>c1效果会更好。
代码借鉴 https://www.pianshen.com/article/2364328713/

clc;clear;
%% 初始化参数
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x);
pnum=50;            %粒子个数
iter=100;           %迭代次数
w=0.8;              %惯性权重
c1=0.8;             %权重参数c1
c2=1.2;             %权重参数c2
xlimit=[0,20];      %位置限制
vlimit=[-1,1];      %速度限制
figure(1);ezplot(f,[xlimit(1),0.01,xlimit(2)]);
Px=((xlimit(2)-xlimit(1))*rand(pnum,1))+xlimit(1);      %随机产生粒子的初始位置
Pbest=Px;                       %粒子i历史上的最好位置
Gbest=[-inf,-inf];              %全局历史上的最好位置
Pymax=ones(pnum,1)/-eps;        %粒子i历史上的最大值
Pymin=ones(pnum,1)/eps;         %粒子i历史上的最小值
Pv=zeros(pnum,1);               %初始化粒子速度
Py=f(Px);                      %计算粒子适应度
hold on;
plot(Px, Py, 'ro');title('初始状态图');
figure(2);
max_record=zeros(pnum,1);
%% 迭代求解
for i=1:iter
    Py=f(Px);          %计算粒子适应度
    %更新Pbest和Gbest,粒子位置
    for j=1:pnum
        if Py(j)>Pymax(j)
           Pymax(j)=Py(j);
           Pbest(j)=Px(j);
        end
    end
     % 全局最好的位置
    if Gbest(1)<max(Pymax)
        [Gbest(1),max_index]=max(Pymax);
        Gbest(2)=Pbest(max_index);
    end
    max_record(i)=Gbest(1);
    % 更新速度和位置
    Pv=Pv*w+c1*rand*(Pbest-Px)+c2*rand*(repmat(Gbest(2),pnum,1)-Px);
    Pv(Pv>vlimit(2))=vlimit(2);
    Pv(Pv<vlimit(1))=vlimit(1);
    Px=Px+Pv;
    Px(Px>xlimit(2))=xlimit(2);
    Px(Px<xlimit(1))=xlimit(1);
    x0 =xlimit(1):0.01:xlimit(2);
    plot(x0, f(x0), 'b-', Px, f(Px), 'ro');title('状态位置变化')
    pause(0.1);
end

%% 得出结果
figure(3);plot(max_record);title('收敛过程');
disp(['最大值:',num2str(Gbest(1))]);
disp(['最大位置:',num2str(Gbest(2))]);

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183134.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 555施密特触发器电路图_555定时器构成的施密特触发器

    555施密特触发器电路图_555定时器构成的施密特触发器目录方法作用内部电路分析555内部电路图分析仿真电路图仿真结果总结将555的6脚和2脚连接在一起,并在5脚接上0.01uF的电容用于滤波,这就构成了施密特触发器。施密特触发器可作为波形整形电路,能将模拟信号波形整形为数字电路能够处理的方波波形,而且由于施密特触发器具有滞回特性,所以可用于抗干扰,其应用包括在开回路配置中用于抗扰,以及在闭回路正回授/负回授配置中用于实现多谐振荡器。百度百科:https://baike.baidu.com/item/%E6%96%

    2025年7月24日
    2
  • L2-012关于堆的判断(堆)[通俗易懂]

    L2-012关于堆的判断(堆)[通俗易懂]堆题目链接将一系列给定数字顺序插入一个初始为空的小顶堆H[]。随后判断一系列相关命题是否为真。命题分下列几种:x is the root:x是根结点;x and y are siblings:x和y是兄弟结点;x is the parent of y:x是y的父结点;x is a child of y:x是y的一个子结点。输入格式:每组测试第1行包含2个正整数N(≤ 1000)和M(≤ 20),分别是插入元素的个数、以及需要判断的命题数。下一行给出区间[−10000,10000]内的N个要被

    2022年8月9日
    6
  • tomcat详细安装及配置教程_tomcat安装及配置

    tomcat详细安装及配置教程_tomcat安装及配置1、进入官网www.apache.org,找到Projects中的tomcat2、Download下边的版本,这里最新的是10.0x,但是一般不选最新版本,我选择的是8.5x,所以点击Download下边的Tomcat8这里我选择了64位的Windows版本,根据自己的需求下载。(建议:最好别放到C盘)下载之后解压二、配置环境1、系统变量添加:变量名:CATALINA_HOME变量值:就是你刚刚解压的那个文件夹路径2、在path中添加%CATAL…

    2022年9月19日
    2
  • 解决numpy.core._exceptions.UFuncTypeError: ufunc ‘add‘ did not contain a loop with signature matchin问题

    解决numpy.core._exceptions.UFuncTypeError: ufunc ‘add‘ did not contain a loop with signature matchin问题

    2021年7月13日
    225
  • 2022clion激活码最新【2022免费激活】

    (2022clion激活码最新)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~FZP9ED60OK-eyJsaWNlbnNlSWQiOi…

    2022年4月1日
    358

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号