决策树模型参数释义「建议收藏」

决策树模型参数释义「建议收藏」转自https://blog.csdn.net/qq_16000815/article/details/80954039”’scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。”’fromsklearn.treeimportDecisionTreeRegressor”’回归决策树”’DecisionTreeRegressor(criterio…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

转自https://blog.csdn.net/qq_16000815/article/details/80954039

”’
scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。
”’
from sklearn.tree import DecisionTreeRegressor
”’
回归决策树
”’
DecisionTreeRegressor(criterion=”mse”,
                         splitter=”best”,
                         max_depth=None,
                         min_samples_split=2,
                         min_samples_leaf=1,
                         min_weight_fraction_leaf=0.,
                         max_features=None,
                         random_state=None,
                         max_leaf_nodes=None,
                         min_impurity_decrease=0.,
                         min_impurity_split=None,
                         presort=False)
”’
参数含义:
1.criterion:string, optional (default=”mse”)
            它指定了切分质量的评价准则。默认为’mse'(mean squared error)。
2.splitter:string, optional (default=”best”)
            它指定了在每个节点切分的策略。有两种切分策咯:
            (1).splitter=’best’:表示选择最优的切分特征和切分点。
            (2).splitter=’random’:表示随机切分。
3.max_depth:int or None, optional (default=None)
             指定树的最大深度。如果为None,则表示树的深度不限,直到
             每个叶子都是纯净的,即叶节点中所有样本都属于同一个类别,
             或者叶子节点中包含小于min_samples_split个样本。
4.min_samples_split:int, float, optional (default=2)
             整数或者浮点数,默认为2。它指定了分裂一个内部节点(非叶子节点)
             需要的最小样本数。如果为浮点数(0到1之间),最少样本分割数为ceil(min_samples_split * n_samples)
5.min_samples_leaf:int, float, optional (default=1)
             整数或者浮点数,默认为1。它指定了每个叶子节点包含的最少样本数。
             如果为浮点数(0到1之间),每个叶子节点包含的最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
             它指定了叶子节点中样本的最小权重系数。默认情况下样本有相同的权重。
7.max_feature:int, float, string or None, optional (default=None)
             可以是整数,浮点数,字符串或者None。默认为None。
             (1).如果是整数,则每次节点分裂只考虑max_feature个特征。
             (2).如果是浮点数(0到1之间),则每次分裂节点的时候只考虑int(max_features * n_features)个特征。
             (3).如果是字符串’auto’,max_features=n_features。
             (4).如果是字符串’sqrt’,max_features=sqrt(n_features)。
             (5).如果是字符串’log2′,max_features=log2(n_features)。
             (6).如果是None,max_feature=n_feature。
8.random_state:int, RandomState instance or None, optional (default=None)
             (1).如果为整数,则它指定了随机数生成器的种子。
             (2).如果为RandomState实例,则指定了随机数生成器。
             (3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes:int or None, optional (default=None)
             (1).如果为None,则叶子节点数量不限。
             (2).如果不为None,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
             如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
             个人理解这个参数应该是针对分类问题时才有意义。这里的不纯度应该是指基尼指数。
             回归生成树采用的是平方误差最小化策略。分类生成树采用的是基尼指数最小化策略。
             加权不纯度的减少量计算公式为:
             min_impurity_decrease=N_t / N * (impurity – N_t_R / N_t * right_impurity
                                – N_t_L / N_t * left_impurity)
             其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
             N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
             分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
             树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
             这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.presort: bool, optional (default=False)
             指定是否需要提前排序数据从而加速寻找最优切分的过程。设置为True时,对于大数据集
             会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。
属性:
1.feature_importances_ : array of shape = [n_features]
             特征重要性。该值越高,该特征越重要。
             特征的重要性为该特征导致的评价准则的(标准化的)总减少量。它也被称为基尼的重要性
2.max_feature_:int
             max_features推断值。
3.n_features_:int
             执行fit的时候,特征的数量。
4.n_outputs_ : int
             执行fit的时候,输出的数量。
5.tree_ : 底层的Tree对象。
Notes:
控制树大小的参数的默认值(例如“max_depth“,“min_samples_leaf“等)导致完全成长和未剪枝的树,
这些树在某些数据集上可能表现很好。为减少内存消耗,应通过设置这些参数值来控制树的复杂度和大小。
方法:
1.fit(X,y):训练模型。
2.predict(X):预测。
”’
 
from sklearn.tree import DecisionTreeClassifier
”’
分类决策树
”’
DecisionTreeClassifier(criterion=”gini”,
                 splitter=”best”,
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features=None,
                 random_state=None,
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 class_weight=None,
                 presort=False)
”’
参数含义:
1.criterion:string, optional (default=”gini”)
            (1).criterion=’gini’,分裂节点时评价准则是Gini指数。
            (2).criterion=’entropy’,分裂节点时的评价指标是信息增益。
2.max_depth:int or None, optional (default=None)。指定树的最大深度。
            如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点
            中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于min_samples_split。
3.splitter:string, optional (default=”best”)。指定分裂节点时的策略。
           (1).splitter=’best’,表示选择最优的分裂策略。
           (2).splitter=’random’,表示选择最好的随机切分策略。
4.min_samples_split:int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。
           (1).如果为整数,则min_samples_split就是最少样本数。
           (2).如果为浮点数(0到1之间),则每次分裂最少样本数为ceil(min_samples_split * n_samples)
5.min_samples_leaf: int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。
           (1).如果为整数,则min_samples_split就是最少样本数。
           (2).如果为浮点数(0到1之间),则每个叶子节点最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
           指定叶子节点中样本的最小权重。
7.max_features:int, float, string or None, optional (default=None).
           搜寻最佳划分的时候考虑的特征数量。
           (1).如果为整数,每次分裂只考虑max_features个特征。
           (2).如果为浮点数(0到1之间),每次切分只考虑int(max_features * n_features)个特征。
           (3).如果为’auto’或者’sqrt’,则每次切分只考虑sqrt(n_features)个特征
           (4).如果为’log2′,则每次切分只考虑log2(n_features)个特征。
           (5).如果为None,则每次切分考虑n_features个特征。
           (6).如果已经考虑了max_features个特征,但还是没有找到一个有效的切分,那么还会继续寻找
           下一个特征,直到找到一个有效的切分为止。
8.random_state:int, RandomState instance or None, optional (default=None)
           (1).如果为整数,则它指定了随机数生成器的种子。
           (2).如果为RandomState实例,则指定了随机数生成器。
           (3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes: int or None, optional (default=None)。指定了叶子节点的最大数量。
           (1).如果为None,叶子节点数量不限。
           (2).如果为整数,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
         如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
         加权不纯度的减少量计算公式为:
         min_impurity_decrease=N_t / N * (impurity – N_t_R / N_t * right_impurity
                            – N_t_L / N_t * left_impurity)
         其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
         N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
         分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
         树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
         这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.class_weight:dict, list of dicts, “balanced” or None, default=None
         类别权重的形式为{class_label: weight}
         (1).如果没有给出每个类别的权重,则每个类别的权重都为1。
         (2).如果class_weight=’balanced’,则分类的权重与样本中每个类别出现的频率成反比。
         计算公式为:n_samples / (n_classes * np.bincount(y))
         (3).如果sample_weight提供了样本权重(由fit方法提供),则这些权重都会乘以sample_weight。
13.presort:bool, optional (default=False)
        指定是否需要提前排序数据从而加速训练中寻找最优切分的过程。设置为True时,对于大数据集
        会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。
属性:
1.classes_:array of shape = [n_classes] or a list of such arrays
        类别的标签值。
2.feature_importances_ : array of shape = [n_features]
        特征重要性。越高,特征越重要。
        特征的重要性为该特征导致的评价准则的(标准化的)总减少量。它也被称为基尼的重要性
3.max_features_ : int
        max_features的推断值。
4.n_classes_ : int or list
        类别的数量
5.n_features_ : int
        执行fit后,特征的数量
6.n_outputs_ : int
        执行fit后,输出的数量
7.tree_ : Tree object
        树对象,即底层的决策树。
方法:
1.fit(X,y):训练模型。
2.predict(X):预测
3.predict_log_poba(X):预测X为各个类别的概率对数值。
4.predict_proba(X):预测X为各个类别的概率值。
”’
 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/184713.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • jetson nano安装pycuda

    jetson nano安装pycudaJetPack4.4版本使用之前配置cuda的环境$sudonano~/.bashrcexportPATH=/usr/local/cuda-10.2/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATHexportCUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2$sudosource~/.bashrc$nvcc-V检测一下是否配置成功之后下载[p

    2022年10月23日
    0
  • 【奇葩bug】微信小程序:Unit8Array is not defined[通俗易懂]

    【奇葩bug】微信小程序:Unit8Array is not defined[通俗易懂]【奇葩bug】微信小程序:Unit8Arrayisnotdefined在用微信小程序里的蓝牙模块,要给设备写入信息。结果报错:VM22:2MiniProgramErrorUnit8ArrayisnotdefinedReferenceError:Unit8Arrayisnotdefined报错原因:正确拼写是Uint8Array…难怪根本搜不到相关问题,幻视误人啊。(完全没有技术含量的bug,也没有耽误太多时间,但实在是让我感到哭笑不得……另外,关于ArrayBuffer

    2022年9月2日
    3
  • 策略篇&访问策略 ❀ (5.4) 01. Explicit Web Proxy 显式web代理 ❀ 飞塔 (Fortinet) 防火墙

    策略篇&访问策略 ❀ (5.4) 01. Explicit Web Proxy 显式web代理 ❀ 飞塔 (Fortinet) 防火墙【简介】提供代理服务的计算机或其它类型的网络节点称为代理服务器,其具体过程为:客户端首先与代理服务器创建连接,接着发出一个对另外的目标服务器的文件或其它资源的连接请求,代理服务器通过与目标服务器连接或从缓存中取得请求的资源,并返回给客户端。通常在这个过程中,代理服务器可能改变客户端请求或服务器端响应的一些内容以满足各种代理需要。显式代理飞塔防火墙支持支持…

    2022年6月21日
    29
  • string的format方法_string str = new string(“abc”)

    string的format方法_string str = new string(“abc”)问题在开发的时候一段字符串的中间某一部分是需要可变的比如一个Textview需要显示”XXX用户来自上海年龄21性别男” 其中的XXX是用户名每个用户也是不一样的 地区上海为可变的string数据 年龄21为可变的int数据 性别男为可变的string数据 遇到这种情况你们是怎么样解决的呢?把这段字符串保存在常量类里吗?不!我们应该遵循Google的开发…

    2022年8月10日
    3
  • 【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)「建议收藏」

    【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)「建议收藏」1、SpringCloud之Ribbon自定义负载均衡策略,2、SpringCloud之Ribbon自定义服务实例心跳检查策略,3、ILoadBalancer、IRule、IPing介绍

    2022年10月13日
    0
  • PDAF_pdaft模型

    PDAF_pdaft模型相位检测、自动对焦、激光、红外线、更高的像素……现在,出现在智能手机上的摄像技术已经越来越先进,并且每个厂商都在不断的尝试创新,追求比竞争对手们拥有更好的拍照效果。三星从Galaxy S5开始使用了PDAF技术,而LG则向我们展示了激光自动对焦,还有联想在最新的Vibe Shot系列产品上带来了红外对焦系统,而索尼更是准备好将自己已经非常领先的摄像头技术使用到智能手机上。但是,究竟

    2022年9月7日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号