resnet18 pytorch_如何搭建服务器

resnet18 pytorch_如何搭建服务器参照ResNet50的搭建,由于50层以上几乎相同,叠加卷积单元数即可,所以没有写注释。101和152的搭建注释可以参照我的ResNet50搭建中的注释:训练可以参照我的ResNet18搭建中的训练部分:ResNet101和152可以依旧参照ResNet50的网络图片:上代码:ResNet101的model.py模型:importtorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassDownSampl

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

ResNet18的搭建请移步:使用PyTorch搭建ResNet18网络并使用CIFAR10数据集训练测试
ResNet34的搭建请移步:使用PyTorch搭建ResNet34网络
ResNet34的搭建请移步:使用PyTorch搭建ResNet50网络

参照我的ResNet50的搭建,由于50层以上几乎相同,叠加卷积单元数即可,所以没有写注释。
ResNet101和152的搭建注释可以参照我的ResNet50搭建中的注释
ResNet101和152的训练可以参照我的ResNet18搭建中的训练部分

ResNet101和152可以依旧参照ResNet50的网络图片:
在这里插入图片描述

上代码:

ResNet101的model.py模型:

import torch
import torch.nn as nn
from torch.nn import functional as F


class DownSample(nn.Module):
    def __init__(self, in_channel, out_channel, stride):
        super(DownSample, self).__init__()
        self.down = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        out = self.down(x)
        return out


class ResNet101(nn.Module):
    def __init__(self, classes_num):            # 指定分类数
        super(ResNet101, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
        # --------------------------------------------------------------------
        self.layer1_first = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        self.layer1_next = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        # --------------------------------------------------------------------
        self.layer2_first = nn.Sequential(
            nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        self.layer2_next = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        # --------------------------------------------------------------------
        self.layer3_first = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        self.layer3_next = nn.Sequential(
            nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        # --------------------------------------------------------------------
        self.layer4_first = nn.Sequential(
            nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        self.layer4_next = nn.Sequential(
            nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        # --------------------------------------------------------------------
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(2048 * 1 * 1, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(1000, classes_num)
        )

    def forward(self, x):
        out = self.pre(x)
        # --------------------------------------------------------------------
        layer1_shortcut = DownSample(64, 256, 1)
        layer1_shortcut.to('cuda:0')
        layer1_identity = layer1_shortcut(out)
        out = self.layer1_first(out)
        out = F.relu(out + layer1_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer1_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer2_shortcut = DownSample(256, 512, 2)
        layer2_shortcut.to('cuda:0')
        layer2_identity = layer2_shortcut(out)
        out = self.layer2_first(out)
        out = F.relu(out + layer2_identity, inplace=True)

        for i in range(3):
            identity = out
            out = self.layer2_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer3_shortcut = DownSample(512, 1024, 2)
        layer3_shortcut.to('cuda:0')
        layer3_identity = layer3_shortcut(out)
        out = self.layer3_first(out)
        out = F.relu(out + layer3_identity, inplace=True)

        for i in range(22):
            identity = out
            out = self.layer3_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer4_shortcut = DownSample(1024, 2048, 2)
        layer4_shortcut.to('cuda:0')
        layer4_identity = layer4_shortcut(out)
        out = self.layer4_first(out)
        out = F.relu(out + layer4_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer4_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        out = self.avg_pool(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)

        return out


ResNet152的model.py模型:

import torch
import torch.nn as nn
from torch.nn import functional as F


class DownSample(nn.Module):
    def __init__(self, in_channel, out_channel, stride):
        super(DownSample, self).__init__()
        self.down = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True)
        )
        
    def forward(self, x):
        out = self.down(x)
        return out


class ResNet152(nn.Module):
    def __init__(self, classes_num):            # 指定了分类数目
        super(ResNet152, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
        # -----------------------------------------------------------------------
        self.layer1_first = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        self.layer1_next = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        # -----------------------------------------------------------------------
        self.layer2_first = nn.Sequential(
            nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        self.layer2_next = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        # -----------------------------------------------------------------------
        self.layer3_first = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        self.layer3_next = nn.Sequential(
            nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        # -----------------------------------------------------------------------
        self.layer4_first = nn.Sequential(
            nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        self.layer4_next = nn.Sequential(
            nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        # -----------------------------------------------------------------------
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(2048 * 1 * 1, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(1000, classes_num)
        )

    def forward(self, x):
        out = self.pre(x)
        # -----------------------------------------------------------------------
        layer1_shortcut = DownSample(64, 256, 1)
        # layer1_shortcut.to('cuda:0')
        layer1_identity = layer1_shortcut(out)
        out = self.layer1_first(out)
        out = F.relu(out + layer1_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer1_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer2_shortcut = DownSample(256, 512, 2)
        # layer2_shortcut.to('cuda:0')
        layer2_identity = layer2_shortcut(out)
        out = self.layer2_first(out)
        out = F.relu(out + layer2_identity, inplace=True)

        for i in range(7):
            identity = out
            out = self.layer2_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer3_shortcut = DownSample(512, 1024, 2)
        # layer3_shortcut.to('cuda:0')
        layer3_identity = layer3_shortcut(out)
        out = self.layer3_first(out)
        out = F.relu(out + layer3_identity, inplace=True)

        for i in range(35):
            identity = out
            out = self.layer3_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer4_shortcut = DownSample(1024, 2048, 2)
        # layer4_shortcut.to('cuda:0')
        layer4_identity = layer4_shortcut(out)
        out = self.layer4_first(out)
        out = F.relu(out + layer4_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer4_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        out = self.avg_pool(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)

        return out
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185167.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 深入浅出 RPC – 深入篇

    深入浅出 RPC – 深入篇

    2022年3月12日
    47
  • C语言魔塔游戏[通俗易懂]

    C语言魔塔游戏[通俗易懂]很早就很想写这个,今天终于写完了。游戏截图:编译环境:VS2017下面我来介绍一下游戏的主要功能和实现方式首先是玩家的定义,使用结构体,这个名字是可以自己改变的structgamerole{ charn…

    2022年5月20日
    33
  • (小米系统系列一)小米/红米BL解锁,解BL锁方法(亲测可用)

    (小米系统系列一)小米/红米BL解锁,解BL锁方法(亲测可用)文章参考自原作者,原作者链接:https://www.bilibili.com/read/cv3305336/,https://www.xiaomi.cn/post/17982230第一步:解锁bootloader手机端操作????设置->关于手机->全部参数->猛戳MIUI版本>成功变身开发者模式;设置->更多设置->开发者选项->设备…

    2022年6月9日
    119
  • matlab中wavedec2,说说wavedec2函数【图】

    matlab中wavedec2,说说wavedec2函数【图】说说wavedec2函数【图】08-10栏目:技术TAG:wavedec2wavedec2http://maiqiuzhizhu.blog.sohu.com/110325150.htmlcopyrightjhua.orgwavedec2函数:copyrightjhua.org1.功能:实现图像(即二维信号)的多层分解.https://www.jhua.org多层,即多尺度.www.jhua…

    2022年6月29日
    20
  • Spatial Dropout

    Spatial DropoutSpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。dropoutdropout是怎么操作的?一般来说,对于输入的张量x,dropout就是随机地将部分元素置零,然后对结果做一个尺度变换。比如,我们随机初始化一…

    2022年4月30日
    52
  • goland激活码 2022【2022最新】

    (goland激活码 2022)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html4KDDGND3CI-eyJsa…

    2022年4月1日
    845

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号