resnet源码pytorch_pytorch yolov3训练自己的数据集

resnet源码pytorch_pytorch yolov3训练自己的数据集书上的,很抽象fromtorchimportnnfromtorch.nnimportfunctionalasFimportosimporttorchvisionclassResidualBlock(nn.Module):def__init__(self,inchannel,outchannel,stride=1,shortcut=None…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

书上的,很抽象

from torch import nn
from torch.nn import functional as F
import os
import torchvision


class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, 3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.right = shortcut

    def forward(self, x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)


class ResNetmy(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNetmy, self).__init__()

        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2, 1))
        self.layer1 = self._make_layer(64, 128, 3)
        self.layer2 = self._make_layer(128, 256, 4, stride=2)
        self.layer3 = self._make_layer(256, 512, 6, stride=2)
        self.layer4 = self._make_layer(512, 512, 3, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, inchannel, outchannel, block_num, stride=1):
        shortcut = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
            nn.BatchNorm2d(outchannel)
        )

        layers = []
        layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))

        for i in range(1, block_num):
            layers.append(ResidualBlock(outchannel, outchannel))
        return nn.Sequential(*layers)

    def forward(self, x):
        print('pre:',x.size())
        x = self.pre(x)
        print(x.size())
        x = self.layer1(x)
        print(x.size())
        x = self.layer2(x)
        print(x.size())
        x = self.layer3(x)
        print(x.size())
        x = self.layer4(x)
        print(x.size())
        x = F.avg_pool2d(x, 7)
        print(x.size())
        x = x.view(x.size(0), -1)
        return self.fc(x)


if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    model = ResNetmy()
    print(model)
    resnet34 = torchvision.models.resnet34(pretrained=False)
    print(resnet34)

自己搭的很复杂的一个

from torch import nn
from torch.nn import functional as F
import os
import torchvision
from torchvision.transforms import ToTensor

totensor = ToTensor()


class myRes34(nn.Module):
    def __init__(self):
        super(myRes34, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.MaxPool2d(2)
        )
        self.f64conv_1 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.f64conv_2 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.f64conv_3 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.residual64_128 = nn.Sequential(
            nn.Conv2d(64, 128, 1, 2, bias=False),
            nn.BatchNorm2d(128)
        )
        self.f128conv_1 = nn.Sequential(
            nn.Conv2d(64, 128, 3, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128)
        )
        self.f128conv_2 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.f128conv_3 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.f128conv_4 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.residual128_256 = nn.Sequential(
            nn.Conv2d(128, 256, 1, 2, bias=False),
            nn.BatchNorm2d(256)
        )
        self.f256conv_1 = nn.Sequential(
            nn.Conv2d(128, 256, 3, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256)
        )
        self.f256conv_2 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_3 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_4 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_5 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_6 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.residual256_512 = nn.Sequential(
            nn.Conv2d(256, 512, 1, 2, bias=False),
            nn.BatchNorm2d(512)
        )
        self.f512conv_1 = nn.Sequential(
            nn.Conv2d(256, 512, 3, 2, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512)
        )
        self.f512conv_2 = nn.Sequential(
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.f512conv_3 = nn.Sequential(
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.fc = nn.Linear(512, 1000)
        self.myrelu1 = nn.ReLU()
        self.myrelu2 = nn.ReLU()
        self.myrelu3 = nn.ReLU()

    def forward(self, x):
        x = self.pre(x)
        x = self.f64conv_1(x)
        x = self.f64conv_2(x)
        x = self.f64conv_3(x)
        print(type(x))
        x = self.myrelu1(self.f128conv_1(x) + self.residual64_128(x))
        x = self.f128conv_2(x)
        x = self.f128conv_3(x)
        x = self.f128conv_4(x)
        x = self.myrelu2(self.f256conv_1(x) + self.residual128_256(x))
        x = self.f256conv_2(x)
        x = self.f256conv_3(x)
        x = self.f256conv_4(x)
        x = self.f256conv_5(x)
        x = self.f256conv_6(x)
        x = self.myrelu3(self.f512conv_1(x) + self.residual256_512(x))
        x = self.f512conv_2(x)
        x = self.f512conv_3(x)
        x = F.avg_pool2d(x, 7)
        x = x.view(x.size(0), -1)
        return self.fc(x)


if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    model = myRes34()
    print(model)
    resnet34 = torchvision.models.resnet34(pretrained=False)
    print(resnet34)

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185515.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 【日用】获取pfx证书序列号[通俗易懂]

    【日用】获取pfx证书序列号[通俗易懂]一、使用java代码packagecom.sanglp.util;importjava.io.ByteArrayInputStream;importjava.io.File;importjava.io.IOException;importjava.math.BigInteger;importjava.security.KeyStore;importjava.security.cert.X509Certificate;importjava.util.Enumeration;

    2022年5月2日
    62
  • 图像处理算法 面试题

    图像处理算法 面试题1、常用边缘检测有哪些算子,各有什么特性?解:常用边缘检测算子如下所述:Sobel算子其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值,Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Ro…

    2022年5月17日
    39
  • idea 2021激活码_最新在线免费激活

    (idea 2021激活码)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~0…

    2022年3月28日
    99
  • Android读写SD卡

    SD卡的读写是我们在开发Android 应用程序过程中最常见的操作。下面介绍SD卡的读写操作方式:1.获取SD卡的根目录2.在SD卡上创建文件夹目录3.在SD卡上创建文件4.判

    2021年12月23日
    37
  • group by 和 order by 的区别 + 理解过程

    group by 和 order by 的区别 + 理解过程orderby和groupby的区别order by 和 group by 的区别:1,order by 从英文里理解就是行的排序方式,默认的为升序。 order by 后面必须列出排序的字段名,可以是多个字段名。2,group by 从英文里理解就是分组。必须有“聚合函数”来配合才能使用,使用时至少需要一个分组标志字段。注意:聚合函数是—sum()、count()、…

    2022年5月9日
    37
  • 华为模拟器ensp怎么安装_ensp模拟器网页版

    华为模拟器ensp怎么安装_ensp模拟器网页版华为模拟器说实话有时候真的是很烦人,总是莫名其妙的出问题,而且网上教程一般也解决不了因此我认为学会ensp的重装真的很重要,因此只要我们删除干净了,安装最多花不了20分钟的时间接下来我就来说说怎么安装华为ensp模拟器—————————————————————————–…

    2022年10月14日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号