resnet源码pytorch_pytorch yolov3训练自己的数据集

resnet源码pytorch_pytorch yolov3训练自己的数据集书上的,很抽象fromtorchimportnnfromtorch.nnimportfunctionalasFimportosimporttorchvisionclassResidualBlock(nn.Module):def__init__(self,inchannel,outchannel,stride=1,shortcut=None…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

书上的,很抽象

from torch import nn
from torch.nn import functional as F
import os
import torchvision


class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, 3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.right = shortcut

    def forward(self, x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)


class ResNetmy(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNetmy, self).__init__()

        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2, 1))
        self.layer1 = self._make_layer(64, 128, 3)
        self.layer2 = self._make_layer(128, 256, 4, stride=2)
        self.layer3 = self._make_layer(256, 512, 6, stride=2)
        self.layer4 = self._make_layer(512, 512, 3, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, inchannel, outchannel, block_num, stride=1):
        shortcut = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
            nn.BatchNorm2d(outchannel)
        )

        layers = []
        layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))

        for i in range(1, block_num):
            layers.append(ResidualBlock(outchannel, outchannel))
        return nn.Sequential(*layers)

    def forward(self, x):
        print('pre:',x.size())
        x = self.pre(x)
        print(x.size())
        x = self.layer1(x)
        print(x.size())
        x = self.layer2(x)
        print(x.size())
        x = self.layer3(x)
        print(x.size())
        x = self.layer4(x)
        print(x.size())
        x = F.avg_pool2d(x, 7)
        print(x.size())
        x = x.view(x.size(0), -1)
        return self.fc(x)


if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    model = ResNetmy()
    print(model)
    resnet34 = torchvision.models.resnet34(pretrained=False)
    print(resnet34)

自己搭的很复杂的一个

from torch import nn
from torch.nn import functional as F
import os
import torchvision
from torchvision.transforms import ToTensor

totensor = ToTensor()


class myRes34(nn.Module):
    def __init__(self):
        super(myRes34, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.MaxPool2d(2)
        )
        self.f64conv_1 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.f64conv_2 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.f64conv_3 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.residual64_128 = nn.Sequential(
            nn.Conv2d(64, 128, 1, 2, bias=False),
            nn.BatchNorm2d(128)
        )
        self.f128conv_1 = nn.Sequential(
            nn.Conv2d(64, 128, 3, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128)
        )
        self.f128conv_2 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.f128conv_3 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.f128conv_4 = nn.Sequential(
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.residual128_256 = nn.Sequential(
            nn.Conv2d(128, 256, 1, 2, bias=False),
            nn.BatchNorm2d(256)
        )
        self.f256conv_1 = nn.Sequential(
            nn.Conv2d(128, 256, 3, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256)
        )
        self.f256conv_2 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_3 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_4 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_5 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.f256conv_6 = nn.Sequential(
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.residual256_512 = nn.Sequential(
            nn.Conv2d(256, 512, 1, 2, bias=False),
            nn.BatchNorm2d(512)
        )
        self.f512conv_1 = nn.Sequential(
            nn.Conv2d(256, 512, 3, 2, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512)
        )
        self.f512conv_2 = nn.Sequential(
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.f512conv_3 = nn.Sequential(
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, 3, 1, 1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.fc = nn.Linear(512, 1000)
        self.myrelu1 = nn.ReLU()
        self.myrelu2 = nn.ReLU()
        self.myrelu3 = nn.ReLU()

    def forward(self, x):
        x = self.pre(x)
        x = self.f64conv_1(x)
        x = self.f64conv_2(x)
        x = self.f64conv_3(x)
        print(type(x))
        x = self.myrelu1(self.f128conv_1(x) + self.residual64_128(x))
        x = self.f128conv_2(x)
        x = self.f128conv_3(x)
        x = self.f128conv_4(x)
        x = self.myrelu2(self.f256conv_1(x) + self.residual128_256(x))
        x = self.f256conv_2(x)
        x = self.f256conv_3(x)
        x = self.f256conv_4(x)
        x = self.f256conv_5(x)
        x = self.f256conv_6(x)
        x = self.myrelu3(self.f512conv_1(x) + self.residual256_512(x))
        x = self.f512conv_2(x)
        x = self.f512conv_3(x)
        x = F.avg_pool2d(x, 7)
        x = x.view(x.size(0), -1)
        return self.fc(x)


if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    model = myRes34()
    print(model)
    resnet34 = torchvision.models.resnet34(pretrained=False)
    print(resnet34)

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185515.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • oleDbCommand访问Excel

    oleDbCommand访问ExceloleDbCommand访问Excel:_oleCmdSelect=newOleDbCommand(“SELECT*FROM[Sheet1$A2:A5]”,_oleConn);objValue=_oleCmdSelect.ExecuteScalar();usingSystem;usingSystem.Collections.Generic;usingS…

    2022年5月12日
    43
  • CentOS安装Mysql8.0图文教程[通俗易懂]

    CentOS安装Mysql8.0图文教程[通俗易懂]CentOS通过yum安装Mysql详细图文教程,再进行配置运行Mysql,让外部可以连接访问

    2022年6月26日
    30
  • unittest测试框架简介

    unittest测试框架简介unitest测试框架简介

    2022年10月14日
    6
  • 《纳什均衡与博弈论》_纳什均衡与博弈论pdf

    《纳什均衡与博弈论》_纳什均衡与博弈论pdf所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。

    2022年10月16日
    4
  • 数独口诀_数独技巧xwing推导过程

    数独口诀_数独技巧xwing推导过程数独是一种传统益智游戏,你需要把一个 9×9 的数独补充完整,使得图中每行、每列、每个 3×3 的九宫格内数字 1∼9 均恰好出现一次。请编写一个程序填写数独。输入格式输入包含多组测试用例。每个测试用例占一行,包含 81 个字符,代表数独的 81 个格内数据(顺序总体由上到下,同行由左到右)。每个字符都是一个数字(1−9)或一个 .(表示尚未填充)。您可以假设输入中的每个谜题都只有一个解决方案。文件结尾处为包含单词 end 的单行,表示输入结束。输出格式每个测试用例,输出一行数据,代表填充

    2022年8月9日
    7
  • 提升进程权限函数OpenProcessToken 及相关函数详解

    提升进程权限函数OpenProcessToken 及相关函数详解提升进程权限函数OpenProcessToken及相关函数详解http://m.blog.csdn.net/blog/Armstronghappy/8797630 LookupPrivilegeValue函数查看系统权限的特权值,返回信息到一个LUID结构体里。BOOLLookupPrivilegeValue(LPCTSTRlpSystemName,LPCTSTRlpN

    2022年6月25日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号