PyTorch建立resnet34和resnet101代码[通俗易懂]

PyTorch建立resnet34和resnet101代码[通俗易懂]model.pyimporttorch.nnasnnimporttorchclassBasicBlock(nn.Module):expansion=1def__init__(self,in_channel,out_channel,stride=1,downsample=None):super(BasicBlock,self).__init__()self.conv1=nn.Conv2d(in_channels=

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

model.py

import torch.nn as nn
import torch


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels
        self.bn1 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188326.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 小明の魔法计划——最长上升子序列[通俗易懂]

    小明の魔法计划——最长上升子序列[通俗易懂]Think:1知识点:最长上升子序列2反思:知识体系需要加深拓展SDUT题目链接小明の魔法计划TimeLimit:1000MSMemoryLimit:65536KBProblemDescription在一个遥远的数学魔法国度,小明在学习一个魔法,这个魔法需要一些施法材料,所幸的是施法材料已经准备好了,下一步就是建立魔法阵了,每一个施法材料都有一个特性值,表示为一个大于1小

    2022年6月4日
    30
  • pd.notnull

    pd.notnull

    2022年6月10日
    27
  • vs2012卸载工具_teighax能卸载吗

    vs2012卸载工具_teighax能卸载吗vs2005的安装和部署功能打包時加入卸载功能:  方法一:  1.在打包項目中添加文件msiexec.exe(一般可在c:/windows/system32/下找到)  2.在文件系統視圖中選擇應用程序文件夾,在msiexec.exe上按右鍵,選擇創建快捷方式,重命名快捷方式為”卸载”.  3.更改此快捷方式的Arguments 为”/x {產品id}”,

    2022年9月23日
    0
  • 大数据经典案例有哪些?

    大数据经典案例有哪些?“互联网还没搞清楚的时候,移动互联就来了移动互联还没搞清楚的时候,大数据就来了”。近两年,“大数据”这个词越来越为大众所熟悉,“大数据”一直是以高冷的形象出现在大众面前,面对大数据,相信许多人都一头雾水。下面我们通过几个经典案例,让大家实打实触摸一把“大数据”。你会发现它其实就在身边而且也是很有趣的。1.啤酒与尿布全球零售业巨头沃尔玛在对消费者购物行为分析时发现,男性顾客在购买婴儿尿片时,常常会顺便搭配几瓶啤酒来犒劳自己,于是尝试推出了将啤酒和尿布摆在一起的促销手段。没想到这个举措居然使尿布

    2022年5月2日
    44
  • 微博账号注册_不用手机号注册微博小号

    微博账号注册_不用手机号注册微博小号新浪微博开放平台:https://open.weibo.com/1.注册账号注册新浪微博账号进入首页。创建网站接入的应用:https://open.weibo.com/选择立即接入,进入到创建

    2022年8月5日
    3
  • webpack(2)webpack核心概念「建议收藏」

    webpack(2)webpack核心概念「建议收藏」前言本质上,webpack是一个用于现代JavaScript应用程序的静态模块打包工具。当webpack处理应用程序时,它会在内部构建一个依赖图(dependencygraph),此

    2022年8月7日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号