python中的深拷贝和浅拷贝_python浅复制和深复制的区别

python中的深拷贝和浅拷贝_python浅复制和深复制的区别薇尔莉特来了~~~~~~

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

这一篇的内容主要是关于python中浅拷贝和深拷贝的原理。博主的其他内容可以在其他专栏中查看,更多内容还在更新中。

在这里插入图片描述
变量赋值的底层逻辑
在这里插入图片描述
在这里插入图片描述

变量赋值机制

num1 = [1,2,3]
num2 = num1 #num1将地址值复制给了num2 (参考将寄存箱小票指向的位置,复制给了num2)
num2.append(4) #所以num2修改了箱子里面的内容,num1取出来的内容也就变了。
print("num1:",num1,id(num1))
print("num2:",num2,id(num2))
#输出
''' num1: [1, 2, 3, 4] 2676183109952 num2: [1, 2, 3, 4] 2676183109952 '''

num1把地址复制给了num2。所以num1和num2指向堆内存中的同一个位置。在这种情况下,无论num1还是num2改变都会导致另一个的改变。

在这里插入图片描述

浅拷贝

再看看下面这个例子:

num1 = [10,[2,3]]
num2 = num1.copy() #将num1所指向的数据内容(地址值),复制了一份给num2

在这里插入图片描述

当执行程序后

num1 = [10,[2,3]]
num2 = num1.copy() #将num1所指向的数据内容(地址值),复制了一份给num2
num2.append(4) 
print("num1:",num1,id(num1)) #num1和num2的地址值不同
print("num2:",num2,id(num2))
num1[0] = 8 
print("num1[0]:",num1[0],id(num1[0]))
print("num2[0]:",num2[0],id(num2[0]))
print("num1[1]:",num1[1],id(num1[1]))
print("num2[1]:",num2[1],id(num2[1]))
#输出:
#num1: [10, [2, 3]] 1664063024384
#num2: [10, [2, 3], 4] 1664063016256
#num1[0]: 8 1664010119696
#num2[0]: 10 1664010119760
#num1[1]: [2, 3] 1664063016576
#num2[1]: [2, 3] 1664063016576

为什么会出现这样的输出结果?

在这里插入图片描述

我们再来看下面这个程序的输出结果

num1 = [10,[2,3]]
num2 = num1.copy() 
num2[1].append(4) 
print(num1)
print(num2)
# 输出
# [10, [2, 3, 4]]
# [10, [2, 3, 4]]

在这里插入图片描述

深拷贝

import copy
num1=[10.[2,3]]
num2=copy.deepcopy(num1)
#在使用深拷贝时,需要引用模块copy

在这里插入图片描述

我们对列表num1,num2做一定的修改

import copy
num1 = [10,[2,3]]
num2 = copy.deepcopy(num1) #将num1所指向的数据元素,复制了一份给num2
# num1[-1].append(8) #所以,修改num1的列表元素中的内容,num2中对应的列表元素也变了
print("num1中列表的地址:",id(num1[-1]),"\nnum2中列表的地址:",id(num2[-1]))
#说明列表中的”列表元素“没有复制元素内容,仅仅复制的是地址。 print("num1:",num1,id(num1))
print("num2:",num2,id(num2))
print("num1[0]:",num1[0],id(num1[0]))
print("num2[0]:",num2[0],id(num2[0]))
print("num1[1]:",num1[1],id(num1[1]))
print("num2[1]:",num2[1],id(num2[1]))
#输出
#num1中列表的地址: 1814079840768 
#num2中列表的地址: 1814079814848
#num2: [10, [2, 3]] 1814079849088
#num1[0]: 10 1814030674512
#num2[0]: 10 1814030674512
#num1[1]: [2, 3] 1814079840768
#num2[1]: [2, 3] 1814079814848

在这里插入图片描述
总结

浅拷贝:只能copy列表的一级元素,复制了嵌套的可变数据类型的地址
深拷贝:能够copy列表所有层级的元素,复制了嵌套的可变数据类型元

在这里插入图片描述

没有合适的画图工具,有些东西没有解释的很清楚,还请见谅。欢迎大家在评论区指正和交流。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188435.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • VSCode 前端常用插件集合

    VSCode 前端常用插件集合VisualStudioCode是由微软开发的一款免费、跨平台的文本编辑器。由于其卓越的性能和丰富的功能,它很快就受到了大家的喜爱。但工欲善其事必先利其器,以下是本人为前端开发收集的常用的vscode插件,有需要的话赶紧mark起来吧~

    2022年7月25日
    8
  • stm32H747_STM32H743的cache

    stm32H747_STM32H743的cache一、H.264的来源和特点H.264是国际标准化组织(ISO)和国际电信联盟(ITU)共同提出的继MPEG4之后的新一代数字视频压缩格式,它即保留了以往压缩技术的优点和精华又具有其它压缩技术无法比拟的许多优点。 1.低码流和MPEG2和MPEG4ASP等压缩技术相比,在同等图像质量下,采用H.264技术压缩后的数据量只有MPEG2的1/8,MPEG4的1/3。 2.高

    2022年9月19日
    1
  • 码农盖房记,纯图片

    码农盖房记,纯图片

    2021年8月26日
    50
  • 基于QT播放器的实现(一)Rgb、YUV格式(附带代码)

    基于QT播放器的实现(一)Rgb、YUV格式(附带代码)基于QT播放器的实现(一)Rgb、YUV格式色度空间转换YUV转RGB的公式对本地RGB32视频图像的播放色度空间转换YUV颜色模型其实常用于视频传输和图像压缩。由于人类的眼睛,对亮度的敏感度远超过对色彩的敏感度,所以视频传输过程中,为了减小带宽,通常将色彩分量UV的比例减小,以达到降低带宽的目的。这就出现了YUV4:4:4、YUV4:2:2、YUV4:1:1等格式。RGB32使用32位来…

    2022年6月1日
    42
  • datagrid激活码【在线注册码/序列号/破解码】

    datagrid激活码【在线注册码/序列号/破解码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月18日
    49
  • Qt Mac 在软件 icns图标制作

    Qt Mac 在软件 icns图标制作

    2022年1月7日
    276

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号