光电编码器工作原理[通俗易懂]

光电编码器工作原理[通俗易懂]光电编码器工作原理点击打开链接根据原理的不同又可分为:增量型、绝对型和混合式增量型。光电编码器的主要工作原理为光电转换,是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器。光电编码器主要由光栅盘和光电检测装置构成,在伺服系统中,光栅盘与电动机同轴致使电动机的旋转带动光栅盘的旋转,再经光电检测装置输出若干个脉冲信号,根据该信号的每秒脉冲数便可计算当前电动机的转速

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

光电编码器工作原理点击打开链接

根据原理的不同又可分为:增量型、绝对型和混合式增量型。

的主要工作原理为光电转换,是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器。光电编码器主要由光栅盘和光电检测装置构成,在伺服系统中,光栅盘与电动机同轴致使电动机的旋转带动光栅盘的旋转,再经光电检测装置输出若干个脉冲信号,根据该信号的每秒脉冲数便可计算当前电动机的转速。光电编码器的码盘输出两个相位差相差90度的光码,根据双通道输出光码的状态的改变便可判断出电动机的旋转方向

光电编码器工作原理[通俗易懂]

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小,绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

增量型编码器:

光电编码器工作原理[通俗易懂]

光电编码器工作原理[通俗易懂]

增量式编码器是直接利用光电转换原理输出三组方波脉冲ABZ相;AB两组脉冲相位差90º,从而可方便地判断出旋转方向,Z相为每转一个脉冲,用于基准点定位

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。

  上面增加零点的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。
  绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。
  绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。


绝对式编码器:

绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。

单圈绝对值编码器把轴细分成规定数量的测量步,最大的分辨率为13位,这就意味着最大可区分8192个位置

光电编码器工作原理[通俗易懂]

上图:点击打开链接

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/189012.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 量子光学中的分束器[通俗易懂]

    量子光学中的分束器[通俗易懂]量子光学中的分束器

    2022年4月22日
    137
  • Unity3D :关于UGUI的网格重建、动静分离[通俗易懂]

    Unity3D :关于UGUI的网格重建、动静分离[通俗易懂]前言:无论是网上的攻略还是以前的经验来说,都说UGUI需要进行动静分离。也就是说同一个界面下的UI,可活动的元素放在一个Canvas下,不可活动的元素放在另一个Canvas下。虽然两个Canvas打断了合批,但是却减少了网格的重建时间,总体上是有优化的。究其原因,是因为在同一个Canvas下的某个元素发生变化时,同一Canvas下的所有元素都会进行网格重建(ReBatch)。而静态的元素在…

    2022年5月10日
    48
  • Eclipse中Editor does not contain a main type 解决方法

    Eclipse中Editor does not contain a main type 解决方法Eclipse中Editordoesnotcontainamaintype解决方法1、问题再现2、原因当前的源代码(所有的包)没有被添加到buildpath中src目录出现错误3、解决方法…

    2022年6月1日
    45
  • 51单片机学习笔记:合并1602和12864液晶排插接口

    51单片机学习笔记:合并1602和12864液晶排插接口 今天成功合并1602和12864液晶排插接口! 码出来分享下 上面这2个图是1602和12864液晶的排插接口,一般的单片机开发板上都会有仔细观察发现他们的插口大多是相同的, 对于第三脚的对比度调节,1602和12864液晶在硬件上是相反的(1602是低电位方向对比度增强,12864是高电位方向对比度增强),但他们接口位置相同,所以一个10K左右的3脚电位器…

    2022年10月20日
    2
  • 【转】UIAutomation

    UIAutomation  UIAutomation是微软从WindowsVista开始推出的一套全新UI自动化测试技术,简称UIA。在最新的WindowsSDK中,UIA和MSAA等其它支持UI自动化技术的组件放在一起发布,叫做WindowsAutomationAPI。  和前面的介绍相比,我倾向于认为UIA是一项自动化测试“技术”,而MSAA和Win32API只是实现自动化…

    2022年4月5日
    280
  • Struts+hibernate+Spring的整合方法

    Struts+hibernate+Spring的整合方法

    2021年7月30日
    55

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号