非线性最小二乘问题例题_非线性自适应控制算法

非线性最小二乘问题例题_非线性自适应控制算法摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触:LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触:

LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。

LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM算法属于一种“信赖域法”——所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域法,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移s,然后在以当前点为中心,以s为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。

事实上,你从所有可以找到的资料里看到的LM算法的说明,都可以找到类似于“如果目标函数值增大,则调整某系数再继续求解;如果目标函数值减小,则调整某系数再继续求解”的迭代过程,这种过程与上面所说的信赖域法是非常相似的,所以说LM算法是一种信赖域法。

 

LM算法需要对每一个待估参数求偏导,所以,如果你的目标函数f非常复杂,或者待估参数相当地多,那么可能不适合使用LM算法,而可以选择Powell算法——Powell算法不需要求导。

 

至于这个求导过程是如何实现的,我还不能给出建议,我使用过的方法是拿到函数的方程,然后手工计算出其偏导数方程,进而在函数中直接使用,这样做是最直接,求导误差也最小的方式。不过,在你不知道函数的形式之前,你当然就不能这样做了——例如,你提供给了用户在界面上输入数学函数式的机会,然后在程序中解析其输入的函数,再做后面的处理。在这种情况下,我猜是需要使用数值求导算法的,但我没有亲自试验过这样做的效率,因为一些优秀的求导算法——例如Ridders算法——在一次求导数值过程中,需要计算的函数值次数也会达到5次以上。这样的话,它当然要比手工求出导函数(只需计算一次,就可以得到导数值)效率要差得多了。不过,我个人估计(没有任何依据的,只是猜的):依赖于LM算法的高效,就算添加了一个数值求导的“拖油瓶”,整个最优化过程下来,它仍然会优于Powell等方法。

关于偏导数的求取

个人认为:在条件允许、对速度和精度任何以方面都有一定要求的前提下,如果待求解的函数形式是显式的,应当尽量自己计算目标函数的偏导数方程。原因在于,在使用数值法估计偏导数值时,尽管我们可以控制每一步偏导数值的精度,但是由于求解过程需要进行多次迭代,特别是收敛过程比较慢的求解过程,需要进行很多次的求解,每一次求解的误差偏差都会在上一步偏差的基础上不断累积。尽管在最后依然可以收敛,但是得到的解已经离可以接受的解偏离比较远了。因此,在求解函数形式比较简单、偏导数函数比较容易求取时,还是尽量手动计算偏导数,得到的结果误差相对更小一些。


这篇解释信赖域算法的文章中,我们已经知道了LM算法的数学模型:

可以证明,此模型可以通过解方程组(Gk+μI)s=−gk确定sk来表征。
即:LM算法要确定一个μ≥0,使得Gk+μI正定,并解线性方程组(Gk+μI)sk=−gk求出sk。
下面来看看LM算法的基本步骤:

·从初始点x0,μ0>0开始迭代

·到第k步时,计算xk和μk

·分解矩阵Gk+μkI,若不正定,令μk=4μk并重复到正定为止

·解线性方程组(Gk+μkI)sk=−gk求出sk并计算rk

·若rk<0.25,令μk+1=4μk;若rk>0.75,令μk+1=μk2;若0.25≤rk≤0.75,令μk+1=μk

·若rk≤0,说明函数值是向着上升而非下降的趋势变化了(与最优化的目标相反),这说明这一步走错了,而且错得“离谱”,此时,不应该走到下一点,而应“原地踏步”,即xk+1=xk,并且和上面rk<0.25的情况一样对μk进行处理。反之,在rk>0的情况下,都可以走到下一点,即xk+1=xk+sk

·        迭代的终止条件:∥gk∥<ε,其中ε是一个指定的小正数(大家可以想像一下二维平面上的寻优过程(函数图像类似于抛物线),当接近极小值点时,迭代点的梯度趋于0)

从上面的步骤可见,LM求解过程中需要用到求解线性方程组的算法,一般我们使用高斯约当消元法,因为它非常稳定——虽然它不是最快最好的算法。
同时,上面的算法步骤也包含对矩阵进行分解的子步骤。为什么要先分解矩阵,再解线性方程组?貌似是这样的(数学不好的人再次泪奔):不分解矩阵使之正定,就无法确定那个线性方程组是有解的。矩阵分解有很多算法,例如LU分解等,这方面我没有看。


加粗部分为个人感想,其余部分为从网上摘录的一些经验总结,对工作起到了很好的启发作用,感谢原作者的分享。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/189073.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 安卓数据转移到iphone很慢_iphone数据迁移中断怎么继续

    安卓数据转移到iphone很慢_iphone数据迁移中断怎么继续如果你刚刚从安卓手机换了新的iPhone或者其他iOS设备,可以按照下面的步骤将数据转移到新设备,实现“无缝”过渡。准备工作在安卓手机上下载安装“转移到iOS”应用,打开安卓设备上的WiFi,并将新iOS设备和安卓设备都插入电源。转移需要在iPhone激活并设置新iOS设备过程进行,如果你已经激活,需要进入“设置”>“通用”>“还原”,然后选择“抹掉所有内容和设…

    2022年9月18日
    5
  • conda 安装whl_whl文件是什么

    conda 安装whl_whl文件是什么里写自定义目录标题)conda安装本地whl文件(opencv,pytorch,torchvision等)因为在线安装总是遇到报错,就直接离线下载安装离线安装报错可能是因为代理没关,下图下载torch,torchvision离线文件网址:https://download.pytorch.org/whl/torch_stable.html里面有cpu和GPU版本的离线文件,下载对应版本(gpu版本要对应cuda)下载好之后,打开Anacondaprompt建一个专门的环境,我已经建好

    2022年10月19日
    3
  • angular入门教程_初学者织围巾简单教程慢动作

    angular入门教程_初学者织围巾简单教程慢动作课程介绍本课程是一个系列基础教程,目标是带领读者上手实战,课程以新版本Angular的3个核心概念作为主线:组件、路由、模块,加上业务开发过程中必须用到的特性:工具、指令、表单、RxJS、i18n、测试,一共分为9部分,34篇文章。除了组件、路由、模块这3个核心小节具有很强的关联性之外,其它内容都是完全独立的,您可以在用到的时候再翻阅。认真读完这个系列文章之后,您会深入理解…

    2022年10月21日
    2
  • 版本过低怎么升级_手机版本出现问题怎么办

    版本过低怎么升级_手机版本出现问题怎么办昨天心血来潮更新了下Eclipse下的SDK,但是由于网速、时间等原因,没有全部更新完。1、打开Eclipse的时候,提示ThisAndroidSDKrequiresAndroidDeveloperToolkitversion23.0.0orabove.Currentversionis22.6.2.v201403212031-1085508.Pleaseup

    2025年6月29日
    3
  • 我现在A函数开启事务,然后调用B函数,B函数中也开启了事务

    我现在A函数开启事务,然后调用B函数,B函数中也开启了事务

    2022年2月8日
    44
  • idea 查看类图_idea查看方法的实现

    idea 查看类图_idea查看方法的实现以BeanFactory为例给大家展示在Idea中查看某个接口的所有的实现类图1.展示一下BeanFactory类2.选中接口右键->Diagrams(showDiagrams)3.出现一个接口类,然后点中接口右键showimplementations或者快捷键ctrl+alt+B4.出现了图然后全选或者快捷键ctrl+a,然后回车就出现了所有的关系图…

    2022年8月15日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号