数据仓库分三层_数据库分层

数据仓库分三层_数据库分层数据仓库各层说明: 一、数据加载层:ETL(Extract-Transform-Load) 二、数据运营层:ODS(OperationalDataStore) 三、数据仓库层:DW(DataWarehouse) 1.数据明细层:DWD(DataWarehouseDetail) 2.数据中间层:DWM(DataWareHouseMiddle) 3.数据服务层:DWS(DataWareHouseService) 四、数据应用层:A

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

参考:

https://www.cnblogs.com/itboys/p/10592871.html 数据仓库–通用的数据仓库分层方法

 

数据仓库各层说明:

一、数据加载层:ETL(Extract-Transform-Load)

二、数据运营层:ODS(Operational Data Store)

三、数据仓库层:DW(Data Warehouse)

1. 数据明细层:DWD(Data Warehouse Detail)

2. 数据中间层:DWM(Data WareHouse Middle)

3. 数据服务层:DWS(Data WareHouse Service)

四、数据应用层:APP(Application)

五、维表层:DIM(Dimension)

数据仓库分三层_数据库分层

分层好处

清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解

减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算

统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径

复杂问题简单化:将复杂的任务分解成多个步骤来完成,每一层只处理单一的步骤,比较简单和容易理解。当数据出现问题之后,不用修复所有的数据,只需要从有问题的步骤开始修复。

屏蔽原始数据的异常:不必改一次业务就需要重新接入数据。

 

我们将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层(APP):

ODS层存放的是接入的原始数据,DW层是存放我们要重点设计的数据仓库中间层数据,APP是面向业务定制的应用数据。

一、数据运营层:ODS(Operational Data Store)
“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。

一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

二、数据仓库层:DW(Data Warehouse)
数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。

1. 数据明细层:DWD(Data Warehouse Detail)

该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。

另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性,后文会举例说明。

2. 数据中间层:DWM(Data WareHouse Middle)

该层会在DWD层的数据基础上,对数据做轻度的聚合操作生成一系列的中间表,提升公共指标的复用性,减少重复加工。

直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

3. 数据服务层:DWS(Data WareHouse Servce)

又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表用于提供后续的业务查询,OLAP分析,数据分发等。

一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。

在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。

三、数据应用层:APP(Application)
在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

四、维表层(Dimension)
最后补充一个维表层,维表层主要包含两部分数据:

高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。

低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。

至此,我们讲完了数据分层设计中每一层的含义,这里做一个总结便于理解,如下图。

数据仓库分三层_数据库分层

主题(Subject)是在较高层次上将企业信息系统中的数据进行综合、归类和分析利用的一个抽象概念,每一个主题基本对应一个宏观的分析领域。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。例如“销售分析”就是一个分析领域,因此这个数据仓库应用的主题就是“销售分析”。

 

各层示例应用说明:

如下图,可以认为是一个电商网站的数据体系设计。我们暂且只关注用户访问日志这一部分数据。

数据仓库分三层_数据库分层

按业务分类汇总数据源,ODS层不同来源的日志文件汇总成一张表,保存到DWD层

DWD层中选取业务关注的核心维度来做聚合操作,比如只保留人、商品、设备和页面区域维度,以此类推生成很多个DWM的中间表;

DWM层抽取数据,将一个人在整个网站中的行为数据放到一张表中,到DWS层,这就是我们的宽表了,可以快速满足大部分的通用型业务需求;

最后,在APP应用层,根据需求从DWS层的一张或者多张表取出数据拼接成一张应用表即可

 

不同的层次中会用到什么计算引擎和存储系统:

数据层的存储一般如下:

Data Source:数据源一般是业务库和埋点,当然也会有第三方购买数据等多种数据来源方式。业务库的存储一般是Mysql 和 PostgreSql。

ODS 层:ODS 的数据量一般非常大,所以大多数公司会选择存在HDFS上,即Hive或者Hbase,Hive居多。

DW 层:一般和 ODS 的存储一致,但是为了满足更多的需求,也会有存放在 PG 和 ES 中的情况。

APP 层:应用层的数据,一般都要求比较快的响应速度,因此一般是放在 Mysql、PG、Redis中。

计算引擎的话,可以简单参考图中所列就行。目前大数据相关的技术更新迭代比较快,本节所列仅为简单参考。

数据仓库分三层_数据库分层

从能力范围来讲,我们希望80%需求由20%的表来支持。直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWM和DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中捞取。结合第一点来讲的话就是:80%的需求,我们都希望以对应用很友好的方式来支持,而不是直接暴露给应用方原始日志

 

数据仓库分三层_数据库分层

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/189252.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • gitbook如何_github入门与实践

    gitbook如何_github入门与实践  本文从“是什么”、“为什么”、“怎么办”、“好不好”四个维度来介绍GitBook,带你从黑暗之中走出来,get这种美妙的写作方式。是什么?  在我认识GitBook之前,我已经在使用Git了,毋容置疑,Git是目前世界上最先进的分布式版本控制系统。  我认为Git不仅是程序员管理代码的工具,它的分布式协作方式同样适用于很多场合,其中一个就是写作(这会是一个…

    2022年10月4日
    2
  • mongodb条件查询语句_linux基本命令的使用

    mongodb条件查询语句_linux基本命令的使用1、字段匹配举例:查询“_id”字段值为5980690eceab061b1613e594的数据。命令:{‘_id’:ObjectId(‘5980690eceab061b1613e594’)}  2、显示指定字段举例:显示“_id”“tag”两个字段。命令:{_id:”,tag:”}查询结果:  3、字段包含举例:查询tag(数组)字段包含“家”的数据。命令:{‘tag’:{$regex:’…

    2022年8月21日
    4
  • fckeditor的配置方法

    fckeditor的配置方法本文章借鉴的是:马千里的博客今天早晨用了一点时间找了一个开源的富文本编辑器,我之前一直用一个很简单的,受限于功能,复用性一直不好,每次重建一个网站都需要用非常多的时间来处理,比较繁琐。在这里记录一下

    2022年7月3日
    20
  • C语言中setjmp()函数和longjmp()函数

    C语言中setjmp()函数和longjmp()函数

    2021年8月23日
    86
  • 基于OpenCv的人脸识别(Python完整代码)

    基于OpenCv的人脸识别(Python完整代码)目前人脸识别有很多较为成熟的方法,这里调用OpenCv库,而OpenCV又提供了三种人脸识别方法,分别是LBPH方法、EigenFishfaces方法、Fisherfaces方法。本文采用的是LBPH(LocalBinaryPatternsHistogram,局部二值模式直方图)方法。opencv是一个开源的的跨平台计算机视觉库,内部实现了图像处理和计算机视觉方面的很多通用算法,对于python而言,在引用opencv库的时候需要写为importcv2。其中,cv2是opencv的C++命名空间名称

    2022年6月7日
    51
  • java.exe 0xc000012d_应用程序无法正常启动0xc000012d,此情况要怎么解决,望大神交一交…

    java.exe 0xc000012d_应用程序无法正常启动0xc000012d,此情况要怎么解决,望大神交一交…应用程序无法正常启动0xc0000142解决方法:1、打开“运行”输入→cmd→回车2、然后把下面这行字符复制到黑色cmd框里面去回车等待dll文件全部注册完成就关闭可以了,为防止输入错误可以复制这条…电脑上出现应用程序正常2113初始化(0xc000142)失败,5261这是由于计算机中的系统进程出错4102导1653致的,具体的修复方法如下:1、首先,在电脑上打开设备管理器:2、然…

    2022年9月26日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号